A359048 a(n) is the minimum denominator d such that the decimal expansion of n/d is eventually periodic with periodicity not equal to zero.
3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 11, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 7, 3, 3, 9, 3, 3, 7, 3, 3, 7
Offset: 1
Examples
For n=21, a(21) = 9 because 21/9 = 2.333... (periodic) and 9 is the first number with that property for numerator 21. That's because 21/2 = 10.5, 21/3 = 7, 21/4 = 5.25, 21/5 = 4.2, 21/6 = 3.5, 21/7 = 3 and 21/8 = 2.625.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Maple
f:= proc(n) local d; for d from 3 by 2 do if (n mod d <> 0) and (d mod 5 <> 0) and nops(numtheory:-factorset(d))=1 then return d fi od end proc: map(f, [$1..100]); # Robert Israel, Jan 19 2023
-
PARI
a(n) = for(d=1, oo, my(p); if (isprimepower(d, &p) && (10 % p) && (n % d), return(d))); \\ Michel Marcus, Dec 28 2022
Extensions
More terms from Michel Marcus, Dec 28 2022
Comments