A034805 Erroneous version of A000022.
1, 0, 1, 1, 2, 2, 6, 9, 20, 37, 86, 183, 419
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Joerg Arndt_, Feb 25 2017: (Start) The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are: : level sequence out-degrees (dots for zeros) : 1: [ 0 1 2 3 4 ] [ 1 1 1 1 . ] : O--o--o--o--o : : 2: [ 0 1 2 3 3 ] [ 1 1 2 . . ] : O--o--o--o : .--o : : 3: [ 0 1 2 3 2 ] [ 1 2 1 . . ] : O--o--o--o : .--o : : 4: [ 0 1 2 3 1 ] [ 2 1 1 . . ] : O--o--o--o : .--o : : 5: [ 0 1 2 2 2 ] [ 1 3 . . . ] : O--o--o : .--o : .--o : : 6: [ 0 1 2 2 1 ] [ 2 2 . . . ] : O--o--o : .--o : .--o : : 7: [ 0 1 2 1 2 ] [ 2 1 . 1 . ] : O--o--o : .--o--o : : 8: [ 0 1 2 1 1 ] [ 3 1 . . . ] : O--o--o : .--o : .--o (End)
N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n); # Another Maple program for g.f. G000598: G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598; spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x] (* second program (after N. J. A. Sloane): *) m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z] (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *) b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0, Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]; Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
def seq(n): B = PolynomialRing(QQ, 't', n+1);t = B.gens() R.= B[[]] T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1)) lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3)) I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)]) return [I.reduce(t[i]) for i in range(1,n+1)] seq(33) # Chris Grossack, Mar 31 2025
a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by _Andrey V. Kulsha_, Sep 22 2011)
A000602 := proc(n) if n=0 then 1 else A000022(n)+A000200(n); end if; end proc:
n = 40; (* algorithm from Rains and Sloane *) S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3; S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *) b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1, k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]; b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40; gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A000598 *) ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i]; CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)
The 4 trees with 6 nodes are: ._._._._._. . ._._._._. . ._._._._. . ._._._. . . . . . . . . | . . . . . . | . . . . | | G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + ...
(* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k, 1, (n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k, 1, n/2-1}]; c[0] = 0; c[1] = 1; b[x_] := If[IntegerQ[x], c[x+1], 0]; a[0] = a[1] = a[2] = 1; a[n_] := b[n/2] - (1/3)*(b[(n-1)/3]-1)*b[(n-1)/3]*(b[(n-1)/3] + 1) + 2*b[n] - b[n+1] - Sum[(1/2)*(b[i]-1)*b[i]*b[-2*i + n - 1], {i, 1, (n-2)/2}] + Sum[b[i]*Sum[b[j]*b[n-i-j-1], {j, i, (1/2)*(n-i-1)}], {i, 1, (n-1)/3}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 19 2015 *) n = 50; (* algorithm from Rains and Sloane *) S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2; S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *) n = 60; c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k,1,(n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k,1,n/2-1}]; c[0] = 0; c[1] = 1; (* as in program 1 above *) gf[x_] := Sum[c[i+1] x^i, {i,0,n}]; (* g.f. for A001190(n+1) *) ci[x_] := SymmetricGroupIndex[3, x] /. x[i_] -> gf[x^i]; CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x,0,n}]], x] (* Robert A. Russell, Jan 17 2023 *)
N := 45: for i from 1 to N do tt := t[ i ]-t[ i-1 ]; b[ i ] := series((tt^2+subs(z=z^2,tt))/2+O(z^(N+1)),z,200): od: i := 'i': bicent := series(sum(b[ i ],i=1..N),z,200); G000200 := bicent; A000200 := n->coeff(G000200,z,n); # Maple code continues from A000022: bicentered == unordered pair of ternary trees of the same height:
n = 40; (* algorithm from Rains and Sloane *) S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
with(combstruct): Alkyl := proc(n) combstruct[count]([ U,{U=Prod(Z,Set(U,card<=3))},unlabeled ],size=n) end: centeredHC := proc(n) option remember; local f,k,z,f2,f3,f4; f := 1 + add(Alkyl(k)*z^k, k=0..iquo(n-1,2)); f2 := series(subs(z=z^2,f), z, n+1); f3 := series(subs(z=z^3,f), z, n+1); f4 := series(subs(z=z^4,f), z, n+1); f := series(f*f3/3+f4/4+f2^2/8+f2*f^2/4+f^4/24, z, n+1); coeff(f, z, n-1) end: seq(centeredHC(n), n=1..32);
M[1146] := [ T,{T=Union(Epsilon,U),U=Prod(Z,Set(U,card<=3))},unlabeled ]: bicenteredHC := proc(n) option remember; if n mod 2<>0 then 0 else binomial(count(M[ 1146 ],size=n/2)+1,2) fi end:
m = 24; a[x_] = Sum[c[k]*x^k, {k, 0, m}]; s[x_] = Series[ 1 + (1/6)*x*(a[x]^3 + 3*a[x]*a[x^2] + 2*a[x^3]) - a[x], {x, 0, m}]; eq = Thread[ CoefficientList[s[x], x] == 0]; Do[so[k] = Solve[eq[[1]], c[k-1]][[1]]; eq = Rest[eq] /. so[k], {k, 1, m+1}]; b = Array[c, m, 0] /. Flatten[ Array[so, m+1] ]; Rest[b*(b+1)/2] (* Jean-François Alcover, Jul 25 2011, after A000598 *)
z+z^2+2*z^3+4*z^4+9*z^5+18*z^6+42*z^7+...
Let T_i(z) = g.f. for ternary trees of height at most i. N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: # G000598 = g.f. for A000598 i := 0: while iA000678 := n->coeff(G000678,z,n); # G000678 = g.f. for A000678. (this Maple program continues in A000022.)
m = 45; (* T = G000598 *) T[] = 0; Do[T[z] = 1 + z*(T[z]^3/6 + T[z^2]*T[z]/2 + T[z^3]/3) + O[z]^m // Normal, m]; G000678[z_] = z*(T[z]^4/24 + T[z^2]*T[z]^2/4 + T[z^2]^2/8 + T[z]*T[z^3]/3 + T[z^4]/4) + O[z]^m; CoefficientList[G000678[z], z] (* Jean-François Alcover, Jan 11 2018, after N. J. A. Sloane *)
n = 50; (* algorithm from Rains and Sloane *) S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
n = 50; (* algorithm from Rains and Sloane *) S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2; S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)
Comments