cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000598 Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled rooted trees in which each node has out-degree <= 3.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.
Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.
The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
(End)
		

References

  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
  • A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
    # Another Maple program for g.f. G000598:
    G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
    spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
  • Mathematica
    m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
    (* second program (after N. J. A. Sloane): *)
    m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z]  (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
      Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
      b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
  • PARI
    seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
    
  • SageMath
    def seq(n):
        B = PolynomialRing(QQ, 't', n+1);t = B.gens()
        R. = B[[]]
        T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
        lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
        I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
        return [I.reduce(t[i]) for i in range(1,n+1)]
    seq(33) # Chris Grossack, Mar 31 2025

Formula

G.f. A(x) satisfies A(x) = 1 + (1/6)*x*(A(x)^3 + 3*A(x)*A(x^2) + 2*A(x^3)).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.8154600331761507465266167782426995425365065396907..., c = 0.517875906458893536993162356992854345458168348098... . - Vaclav Kotesovec, Aug 15 2015

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000602 Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, 60523, 148284, 366319, 910726, 2278658, 5731580, 14490245, 36797588, 93839412, 240215803, 617105614, 1590507121, 4111846763, 10660307791, 27711253769
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted, nodes are unlabeled. Every node has degree <= 4.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000628 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The degree of each node is then <= 4.

Examples

			a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by _Andrey V. Kulsha_, Sep 22 2011)
		

References

  • Klemens Adam, Die Anzahlbestimmung der isomeren Alkane, MNU 1983, 36, 29 (in German).
  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • L. Bytautats, D. J. Klein, Alkane Isomer Combinatorics: Stereostructure enumeration and graph-invariant and molecular-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
  • A. Cayley, Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden..., Chem. Ber. 8 (1875), 1056-1059.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.1 Chemical Isomers, p. 299.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • J. B. Hendrickson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 2 on page 103.
  • M. D. Jackson and T. I. Bieber, Applications of degree distribution, 2: construction and enumeration of isomers in the alkane series, J. Chem. Info. and Computer Science, 33 (1993), 701-708.
  • J. Lederberg et al., Applications of artificial intelligence for chemical systems, I: The number of possible organic compounds. Acyclic structures containing C, H, O and N, J. Amer. Chem. Soc., 91 (1969), 2973-2097.
  • L. M. Masinter, Applications of artificial intelligence for chemical systems, XX, Exhaustive generation of cyclic and acyclic isomers, J. Amer. Chem. Soc., 96 (1974), 7702-7714.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly - compare first link below]
  • M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
  • D. H. Rouvray, An introduction to the chemical applications of graph theory, Congress. Numerant., 55 (1986), 267-280. - N. J. A. Sloane, Apr 08 2012
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Marten J. ten Hoor, Formula for Success?, Education in Chemistry, 2005, 42(1), 10.
  • S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.

Crossrefs

Column k=4 of A144528.
A000602 = A000022 + A000200 for n>0.

Programs

  • Maple
    A000602 := proc(n)
        if n=0 then
            1
        else
            A000022(n)+A000200(n);
        end if;
    end proc:
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A000598 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A010372(n) + A010373(n/2) for n even, a(n) = A010372(n) for n odd.
Also equals A000022 + A000200 (n>0), both of which have known generating functions. Also g.f. = A000678(x) - A000599(x) + A000598(x^2) = (x + x^2 + 2x^3 + ...) - (x^2 + x^3 + 3x^4 + ...) + (1 + x^2 + x^4 + ...) = 1 + x + x^2 + x^3 + 2x^4 + 3x^5 + ...
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S4,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24, where B(x) = 1 + x * cycle_index(S3,B(x)) = 1 + x * (B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3)) / 6 is the generating function for A000598. - Robert A. Russell, Jan 16 2023

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A000628 Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949
Offset: 0

Views

Author

Keywords

Comments

Trees are unrooted; nodes are unlabeled and have degree <= 4.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different.
Has also been described as steric planted trees (paraffins) with n nodes.

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
  • R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Blair and Henze give recurrence (see the Maple code).
For even n a(n) = A086194(n) + A086200(n/2), for odd n a(n) = A086194(n).

Extensions

Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
More terms from Emeric Deutsch, May 16 2004

A000022 Number of centered hydrocarbons with n atoms.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 2, 6, 9, 20, 37, 86, 181, 422, 943, 2223, 5225, 12613, 30513, 74883, 184484, 458561, 1145406, 2879870, 7274983, 18471060, 47089144, 120528657, 309576725, 797790928, 2062142876, 5345531935, 13893615154, 36201693122
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

References

  • R. G. Busacker and T. L. Saaty, Finite Graphs and Networks, McGraw-Hill, NY, 1965, p. 201. (They reproduce Cayley's mistakes.)
  • A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Bäume genannt werden und ihre Anwendung auf die Theorie chemischer Verbindungen", Chem. Ber. 8 (1875), 1056-1059.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000022 + A000200 = A000602 for n>0. Cf. A010372.

Programs

  • Maple
    # We continue from the Maple code in A000678: Unordered 4-tuples of ternary trees with one of height i and others of height at most i-1:
    N := 45: i := 1: while i<(N+1) do Tb := t[ i ]-t[ i-1 ]: Ts := t[ i ]-1: Q2 := series(Tb*Ts+O(z^(N+1)),z,200): q2[ i ] := Q2: i := i+1; od: q2[ 0 ] := 0: q[ -1 ] := 0:
    for i from 0 to N do c[ i ] := series(q[ i ]-q[ i-1 ]-q2[ i ]+O(z^(N+1)),z,200); od:
    # erase height information: i := 'i': cent := series(sum(c[ i ],i=0..N),z,200); G000022 := cent; A000022 := n->coeff(G000022,z,n);
    # continued in A000200.
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S4[T,h-1,z]z - S4[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)

A010373 Number of unrooted quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n+2) with a bicentroid, ignoring stereoisomers.

Original entry on oeis.org

1, 1, 3, 10, 36, 153, 780, 4005, 22366, 128778, 766941, 4674153, 29180980, 185117661, 1193918545, 7800816871, 51584238201, 344632209090, 2324190638055, 15804057614995, 108277583483391, 746878494484128, 5183852459907628
Offset: 1

Views

Author

Keywords

Comments

The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086200 for the analogous sequence with stereoisomers counted.

References

  • F. Harary, Graph Theory, p. 36, for definition of bicentroid.

Crossrefs

A000602(n) = A010372(n) + a(n/2) for n even, A000602(n) = A010372(n) for n odd.

Programs

  • Maple
    M[1146] := [ T,{T=Union(Epsilon,U),U=Prod(Z,Set(U,card<=3))},unlabeled ]:
    bicenteredHC := proc(n) option remember; if n mod 2<>0 then 0 else binomial(count(M[ 1146 ],size=n/2)+1,2) fi end:
  • Mathematica
    m = 24; a[x_] = Sum[c[k]*x^k, {k, 0, m}]; s[x_] = Series[ 1 + (1/6)*x*(a[x]^3 + 3*a[x]*a[x^2] + 2*a[x^3]) - a[x], {x, 0, m}]; eq = Thread[ CoefficientList[s[x], x] == 0];
    Do[so[k] = Solve[eq[[1]], c[k-1]][[1]]; eq = Rest[eq] /. so[k], {k, 1, m+1}]; b = Array[c, m, 0] /. Flatten[ Array[so, m+1] ]; Rest[b*(b+1)/2] (* Jean-François Alcover, Jul 25 2011, after A000598 *)

Formula

a(n) = b(n)*(b(n)+1)/2, where b(n) = A000598[ n ].

Extensions

Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A086194 Number of unrooted steric quartic trees with n (unlabeled) nodes and possessing a centroid; number of n carbon alkanes C(n)H(2n +2) with a centroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 11, 9, 55, 70, 345, 494, 2412, 3788, 18127, 30799, 143255, 256353, 1173770, 2190163, 9892302, 19130814, 85289390, 169923748, 749329719, 1531701274, 6688893605, 13984116304, 60526543480, 129073842978
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010372 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = a(n) + A086200(n/2), for odd n A000628(n) = a(n), since every tree has either a centroid or a bicentroid but not both.

Programs

  • Mathematica
    c[0] = 1; f[x_, m_] := Sum[c[k] x^k, {k, 0, m}]; coes[m_] := CoefficientList[Series[f[x, m] - 1 - (x*(f[x, m]^3 + 2*f[x^3, m])/3), {x, 0, m}], x] // Rest; r[x_, m_] := r[x, m] = (f[x, m] /. Solve[Thread[coes[m] == 0]] // First); b[m_] := CoefficientList[(1/12)*(r[x, m]^4 + 3*r[x^2, m]^2 + 8*r[x, m]*r[x^3, m]), x]; a[1]=1; a[2]=0; a[n_] := b[Quotient[n-1, 2]][[n]]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 30}] (* Jean-François Alcover, Dec 29 2014 *)

Formula

Let r(x) = g.f. A(x) for A000625 truncated after the x^n term (x^0 through x^n terms only). Then coefficients of x^(2n) and x^(2n+1) in [r(x)^4 + 8 r(x^3) r(x) + 3 r(x^2)^2]/12 are terms 2n+1 and 2n+2 in current sequence..

A036672 Number of stereoisomers of acyclic hydrocarbons with n carbon atoms.

Original entry on oeis.org

1, 3, 4, 13, 31, 109, 372, 1446, 5714, 23791, 100827, 438019, 1931818, 8648820, 39178079, 179383748, 828905252, 3861958783, 18125392905, 85631735301, 406977645228, 1944737525915, 9338989516911, 45051405221284, 218236995129380, 1061256971559421
Offset: 1

Views

Author

Keywords

Comments

Comment from Sean A. Irvine, edited by Natan Arie Consigli, Dec 26 2016 : (Start)
This is the counting series for the hypothetical stereo-isomers of all acyclic hydrocarbons that satisfy the octet rule.
A036673 is the variant with triple bonds excluded.
A002986 doesn't count stereoisomers.
The reference gives a three-variable generating function and cycle-index over A4 which can produce both these sequences. There are also dependencies on earlier generating functions.
(End)
Read has incorrect a(10)=27100. - Sean A. Irvine, Nov 20 2020

Examples

			From _M. F. Hasler_, Dec 26 2016: (Start)
For n = 1, there is only a(1) = 1 possibility, CH4.
For n = 2, one has C2H6 (ethane, H3C-CH3), C2H4 (ethylene, H2C=CH2 with a double bond), C2H2 (ethyne, HC≡CH, triple bond), whence a(2) = 3.
For n = 3, one has C3H8 (H3C-CH2-CH3), C3H6 (H2C=CH-CH3, propene), and two C3H4 (H2C=C=CH2, propadiene, and HC≡C-CH3: methylacetylene), thus a(3) = 4. Cyclic molecules like cyclopropane C3H6 and cyclopropropene C3H4 are excluded. (End)
From _Natan Arie Consigli_, Dec 26 2016: (Start)
For n = 4, we have butane, isobutane, 1-butene, cis/trans-2-butene, buta-1,2-diene, buta-1,3-diene, butatriene, isobutylene, but-1-yne, but-2-yne, diacetylene, but-1-en-3-yne.
For n = 5 we have:
- 3 alkanes: pentane, methylbutane and neopentane.
- 17 alkenes: 1-pentene, (E/Z)-2-pentene, 1,2-pentadiene, (E/Z)-1,3-pentadiene, 1,4-pentadiene, 1,2,3-petatriene, penta-1,2,4-triene, pentatetraene, 2-methylbut-1-ene, 2-methylbut-2-ene, 3-methylbut-1-ene, isoprene, 3-methylbuta-1,2-diene, (R/S)-penta-2,3-diene.
-11 alkynes: 1-pentyne, 2-pentyne, pent-1-en-4-yne, (E/Z)-pent-3-en-1-yne, penta-1,2-dien-4-yne, penta-1,4-diyne, penta-1,3-diyne, pent-1-en-3-yne, 3-methylbut-1-yne, 2-methylbut-1-en-3-yne. (End)
		

Crossrefs

Extensions

a(10) corrected and more terms from Sean A. Irvine, Nov 20 2020
Showing 1-7 of 7 results.