A000030 Initial digit of n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
23 begins with a 2, so a(23) = 2.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- David W. Wilson, Table of n, a(n) for n = 0..10000
- A. Cobham, Uniform Tag Sequences, Mathematical Systems Theory, 6 (1972), 164-192.
Crossrefs
Programs
-
Haskell
a000030 = until (< 10) (`div` 10) -- Reinhard Zumkeller, Feb 20 2012, Feb 11 2011
-
Magma
[Intseq(n)[#Intseq(n)]: n in [1..100]]; // Vincenzo Librandi, Nov 17 2018
-
Maple
A000030 := proc(n) if n = 0 then 0; else convert(n,base,10) ; %[-1] ; end if; end proc: seq(A000030(n),n=0..200) ;# N. J. A. Sloane, Feb 10 2017
-
Mathematica
Join[{0},First[IntegerDigits[#]]&/@Range[90]] (* Harvey P. Dale, Mar 01 2011 *) Table[Floor[n/10^(Floor[Log10[n]])], {n, 1, 50}] (* G. C. Greubel, May 16 2017 *) Table[NumberDigit[n,IntegerLength[n]-1],{n,0,100}] (* Harvey P. Dale, Aug 29 2021 *)
-
PARI
a(n)=if(n<10,n,a(n\10)) \\ Mainly for illustration.
-
PARI
A000030(n)=n\10^logint(n+!n,10) \\ Twice as fast as a(n)=digits(n)[1]. Before digits() was added in PARI v.2.6.0 (2013), one could use, e.g., Vecsmall(Str(n))[1]-48. - M. F. Hasler, Nov 17 2018
-
Python
def a(n): return int(str(n)[0]) print([a(n) for n in range(85)]) # Michael S. Branicky, Jul 01 2022
Formula
a(n) = [n / 10^([log_10(n)])] where [] denotes floor and log_10(n) is the logarithm is base 10. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = k for k*10^j <= n < (k+1)*10^j for some j. - M. F. Hasler, Mar 23 2015
Comments