A000055 Number of trees with n unlabeled nodes.
1, 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867, 317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890, 279793450, 751065460, 2023443032, 5469566585, 14830871802, 40330829030, 109972410221, 300628862480, 823779631721, 2262366343746, 6226306037178
Offset: 0
Examples
a(1) = 1 [o]; a(2) = 1 [o-o]; a(3) = 1 [o-o-o]; a(4) = 2 [o-o-o and o-o-o-o] | o G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + ...
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 55.
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 49.
- A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 459).
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
- D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar and Robert G. Wilson v, Table of n, a(n) for n = 0..1000
- Jeremy C. Adcock, Sam Morley-Short, Joshua W. Silverstone, and Mark G. Thompson, Hard limits on the postselectability of optical graph states, arXiv:1806.03263 [quant-ph], 2018.
- H. R. Afshar, E. A. Bergshoeff, and W. Merbis, Interacting spin-2 fields in three dimensions, arXiv preprint arXiv:1410.6164 [hep-th], 2014-2015.
- Ruggero Bandiera and Florian Schaetz, Eulerian idempotent, pre-Lie logarithm and combinatorics of trees, arXiv:1702.08907 [math.CO], 2017. Mentions this sequence.
- Madeleine Burkhart and Joel Foisy, Enumerating spherical n-links, Involve, Vol. 11 (2018), No. 2, 195-206.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- A. Cayley, On the analytical forms called trees, Amer. J. Math., 4 (1881), 266-268.
- CombOS - Combinatorial Object Server, Generate graphs
- Benjamin Côté, Hélène Cossette, and Etienne Marceau, Centrality and topology properties in a tree-structured Markov random field, arXiv:2410.20240 [math.ST], 2024. See p. 18.
- Antoine Dailly and Tuomo Lehtilä, Reconstructing graphs with subgraph compositions, arXiv:2504.00169 [math.CO], 2025. See p. 28.
- R. Ferrer-i-Cancho, Non-crossing dependencies: least effort, not grammar, arXiv preprint arXiv:1411.2645 [cs.CL], 2014.
- S. R. Finch, Otter's Tree Enumeration Constants
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 481.
- Andrew Gainer-Dewar, Gamma-Species and the Enumeration of k-Trees, Electronic Journal of Combinatorics, Volume 19 (2012), #P45 and arXiv:1208.5993 [math.CO], 2012.
- Xiangrui Gao, Song He, and Yong Zhang, Labelled tree graphs, Feynman diagrams and disk integrals arxiv:1708.08701 [hep-th], 2017, see p. 4.
- Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
- D. D. Grant, The stability index of graphs, pp. 29-52 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974. Gives first 45 terms.
- Paul E. Gunnells, Generalized Catalan numbers from hypergraphs, arXiv:2102.05121 [math.CO], 2021. Mentions this sequence p. 3.
- T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- House of Graphs, Trees
- Andrew Jobbings, Enumerating nets, Preprint 2015.
- Mithra Karamchedu and Lucas Bang, Generating the Spanning Trees of Series-Parallel Graphs up to Graph Automorphism, arXiv:2508.13480 [cs.DS], 2025. See p. 4.
- Elena V. Konstantinova and Maxim V. Vidyuk, Discriminating tests of information and topological indices. Animals and trees, J. Chem. Inf. Comput. Sci. 43 (2003), 1860-1871. See Table 15, column 1 on page 1868.
- G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-trees, arXiv:math/0312424 [math.CO], 2003.
- Steve Lawford and Yll Mehmeti, Cliques and a new measure of clustering: with application to U.S. domestic airlines, arXiv:1806.05866 [cs.SI], 2018.
- P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
- Gang Li, Generation of Rooted Trees and Free Trees, Comp. Sci. MSc thesis paper, 1996.
- R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016.
- Richard J. Mathar, Counting Connected Graphs without Overlapping Cycles, arXiv:1808.06264 [math.CO], 2018.
- Robert Munafo, Relation to Tree Graphs
- R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
- Sebastian Piec, Krzysztof Malarz and Krzysztof Kulakowski. How to count trees?, arXiv:cond-mat/0501594 [cond-mat.stat-mech], 2005; Int. J. Modern Phys., C16 (2005) 1527-1534.
- N. Pippenger, Enumeration of equicolorable trees, SIAM J. Discrete Math., 14 (2001), 93-115.
- J. M. Plotkin and J. W. Rosenthal, How to obtain an asymptotic expansion of a sequence from an analytic identity satisfied by its generating function, J. Austral. Math. Soc. (Series A), Vol. 56 (1994), 131-143.
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- R. W. Robinson, Letter to N. J. A. Sloane, Jul 29 1980
- Yaniv Sadeh, Haim Kaplan, and Uri Zwick, Search Trees on Trees via LP, arXiv:2501.17563 [cs.DS], 2025. See p. 12.
- Sage, Common Graphs
- A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972
- N. J. A. Sloane, Illustration of initial terms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Overview of the following parts: Cover, Front matter, Chapter 1: Trees, Trees (cont'd: pt.2), Trees (cont'd: pt.3), Chapter 2: Centers and Centroids, Chap.2 (cont'd), Chapter 3: Random Trees, Chapter 4: Rooted Trees, Chapter 5: Homeomorphically Irreducible Trees, Chapter 6: Tables (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Ivan Stošić and Ivan Damnjanović, An efficient algorithm for generating transmission irregular trees, arXiv:2502.15453 [cs.DM], 2025. See p. 11.
- Tanay Wakhare, Eric Wityk, and Charles R. Johnson. The proportion of trees that are linear, Discrete Mathematics 343.10 (2020): 112008. Also arXiv:1901.08502 [math.CO], 2019-2020. See Tables 1 and 2 (but beware errors).
- Eric Weisstein's World of Mathematics, Tree
- Pascal Welke, Tamás Horváth, and Stefan Wrobel, Probabilistic and exact frequent subtree mining in graphs beyond forests, Machine Learning (2019), 1-28.
- Robert Alan Wright, Bruce Richmond, Andrew Odlyzko, and Brendan D. McKay, Constant Time Generation of Free Trees, SIAM Journal of Computing, vol. 15, no. 2, pp. 540-548, (1986) [preprint].
- Index entries for sequences related to trees
- Index entries for "core" sequences
Crossrefs
Cf. A000676 (centered trees), A000677 (bicentered trees), A027416 (trees with a centroid), A102011 (trees with a bicentroid), A034853 (refined by diameter), A238414 (refined by maximum vertex degree).
Cf. A000081 (rooted trees), A000272 (labeled trees), A000169 (labeled rooted trees), A212809 (radius of convergence).
Programs
-
Haskell
import Data.List (generic_index) import Math.OEIS (getSequenceByID) triangle x = (x * x + x) `div` 2 a000055 n = let {r = genericIndex (fromJust (getSequenceByID "A000081")); (m, nEO) = divMod n 2} in r n - sum (zipWith (*) (map r [0..m]) (map r [n, n-1..])) + (1-nEO) * (triangle (r m + 1)) -- Walt Rorie-Baety, Jun 12 2021
-
Magma
N := 30; P
:= PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; G000055 := 1 + G - G^2/2 + Evaluate(G,x^2)/2; A000055 := Eltseq(G000055); // Geoff Baileu (geoff(AT)maths.usyd.edu.au), Nov 30 2009 -
Maple
G000055 := series(1+G000081-G000081^2/2+subs(x=x^2,G000081)/2,x,31); A000055 := n->coeff(G000055,x,n); # where G000081 is g.f. for A000081 starting with n=1 term with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> `if`(n=0, 1, b(n) -(add(b(k) *b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2): seq(a(n), n=0..50); # Alois P. Heinz, Aug 21 2008 # Program to create b-file b000055.txt: A000081 := proc(n) option remember; local d, j; if n <= 1 then n else add(add(d*procname(d),d=numtheory[divisors](j))*procname(n-j),j=1..n-1)/(n-1); fi end: A000055 := proc(nmax) local a81, n, t, a, j, i ; a81 := [seq(A000081(i), i=0..nmax)] ; a := [] ; for n from 0 to nmax do if n = 0 then t := 1+op(n+1, a81) ; else t := op(n+1, a81) ; fi; if type(n, even) then t := t-op(1+n/2, a81)^2/2 ; t := t+op(1+n/2, a81)/2 ; fi; for j from 0 to (n-1)/2 do t := t-op(j+1, a81)*op(n-j+1, a81) ; od: a := [op(a), t] ; od: a end: L := A000055(1000) ; # R. J. Mathar, Mar 06 2009
-
Mathematica
s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n-1, i] i, {i, 1, n-1}] / (n-1); Table[a[i] - Sum[a[j] a[i-j], {j, 1, i/2}] + If[OddQ[i], 0, a[i/2] (a[i/2] + 1)/2], {i, 1, 50}] (* Robert A. Russell *) b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[d*b[d]*b[n-j], {j, 1, n-1}, {d, Divisors[j]}]/(n-1); a[0] = 1; a[n_] := b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[Mod[n, 2] == 0, b[n/2], 0])/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
-
PARI
{a(n) = local(A, A1, an, i, t); if( n<2, n>=0, an = Vec(A = A1 = 1 + O('x^n)); for(m=2, n, i=m\2; an[m] = sum(k=1, i, an[k] * an[m-k]) + (t = polcoeff( if( m%2, A *= (A1 - 'x^i)^-an[i], A), m-1))); t + if( n%2==0, binomial( -polcoeff(A, i-1), 2)))}; /* Michael Somos */
-
PARI
N=66; A=vector(N+1, j, 1); for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) ); A000081=concat([0], A); H(t)=subst(Ser(A000081, 't), 't, t); x='x+O('x^N); Vec( 1 + H(x) - 1/2*( H(x)^2 - H(x^2) ) ) \\ Joerg Arndt, Jul 10 2014
-
Python
# uses function from A000081 def A000055(n): return 1 if n == 0 else A000081(n)-sum(A000081(i)*A000081(n-i) for i in range(1,n//2+1)) + (0 if n % 2 else (A000081(n//2)+1)*A000081(n//2)//2) # Chai Wah Wu, Feb 03 2022
-
SageMath
[len(list(graphs.trees(n))) for n in range(16)] # Peter Luschny, Mar 01 2020
Comments