cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000069 Odious numbers: numbers with an odd number of 1's in their binary expansion.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
Offset: 1

Views

Author

Keywords

Comments

This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
A115384(n) = number of odious numbers <= n; A000120(a(n)) = A132680(n). - Reinhard Zumkeller, Aug 26 2007
Indices of 1's in the Thue-Morse sequence A010060. - Tanya Khovanova, Dec 29 2008
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022

Examples

			For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - _Vladimir Shevelev_, Jan 16 2012
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
  • Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
  • N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015.
Complement of A001969 (the evil numbers). Cf. A133009.
a(n) = 2*n + 1 - A010060(n) = A001969(n) + (-1)^A010060(n).
First differences give A007413.
Note that A000079, A083420, A002042, A002089, A132679 are subsequences.
See A027697 for primes, also A230095.
Cf. A005408 (odd numbers), A006068, A026424.

Programs

  • Haskell
    a000069 n = a000069_list !! (n-1)
    a000069_list = [x | x <- [0..], odd $ a000120 x]
    -- Reinhard Zumkeller, Feb 01 2012
    
  • Magma
    [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
    
  • Maple
    s := proc(n) local i,j,k,b,sum,ans; ans := [ ]; j := 0; for i while jA000069 := n->t1[n]; # s(k) gives first k terms.
    is_A000069 := n -> type(add(i,i=convert(n,base,2)),odd):
    seq(`if`(is_A000069(i),i,NULL),i=0..40); # Peter Luschny, Feb 03 2011
  • Mathematica
    Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
    a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
  • PARI
    {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    [n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
    
  • Python
    def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023

Formula

G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(n+1) = (1/2) * (4*n + 1 + (-1)^A000120(n)). - Ralf Stephan, Sep 14 2003
Numbers n such that A010060(n) = 1. - Benoit Cloitre, Nov 15 2003
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
(-1)^a(n) = 2*A010060(n)-1. - Benoit Cloitre, Mar 08 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
a(n+1) mod 2 = 1 - A010060(n) = A010059(n). - Robert G. Wilson v, Jan 18 2012
A005590(a(n)) > 0. - Reinhard Zumkeller, Apr 11 2012
A106400(a(n)) = -1. - Reinhard Zumkeller, Apr 29 2012
a(n+1) = A006068(n) XOR (2*A006068(n) + 1). - Rémy Sigrist, Apr 14 2022