A000119 Number of representations of n as a sum of distinct Fibonacci numbers.
1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 3, 4, 1, 4, 4, 3, 6, 3, 5, 5, 2, 6, 4, 4, 6, 2, 5, 5, 3, 6, 3, 4, 4, 1, 5, 4, 4, 7, 3, 6, 6, 3, 8, 5, 5, 7, 2, 6, 6, 4, 8, 4, 6, 6, 2, 7, 5, 5, 8, 3, 6, 6, 3, 7, 4, 4, 5, 1, 5, 5, 4, 8, 4, 7, 7, 3, 9, 6, 6, 9, 3, 8, 8, 5
Offset: 0
References
- M. Bicknell-Johnson, pp. 53-60 in "Applications of Fibonacci Numbers", volume 8, ed: F. T. Howard, Kluwer (1999); see Theorem 3.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..6765
- Federico Ardila, The coefficients of a Fibonacci power series, Fib. Quart. 42 (3) (2004), 202-204.
- Erik Bates, Blan Morrison, Mason Rogers, Arianna Serafini, and Anav Sood, A new combinatorial interpretation of partial sums of m-step Fibonacci numbers, arXiv:2503.11055 [math.CO], 2025. See p. 2.
- Jean Berstel, Home Page
- Jean Berstel, An Exercise on Fibonacci Representations, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.
- Pierre Bonardo and Anna E. Frid, Number of valid decompositions of Fibonacci prefixes, arXiv:1806.09534 [math.CO], 2018.
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 54.
- Leonard Carlitz, Fibonacci Representations, Fibonacci Quarterly, volume 6, number 4, October 1968, pages 193-220, a(n) = R(N).
- Sam Chow and Tom Slattery, On Fibonacci partitions, arXiv:2009.08222 [math.NT], 2020.
- Sam Chow and Tom Slattery, On Fibonacci partitions, Journal of Number Theory, Volume 225, August 2021, Pages 310-326.
- Sam Chow and Owen Jones, On the variance of the Fibonacci partition function, arXiv:2308.15415 [math.NT], 2023.
- Michel Dekking and Ad van Loon, Counting base phi representations, arXiv:2304.11387 [math.NT], 2023.
- Tom Kempton, The Dynamics of the Fibonacci Partition Function, arXiv:2311.06006 [math.NT], 2023.
- David A. Klarner, Representations of N as a sum of distinct elements from special sequences, part 1, part 2, Fib. Quart., 4 (1966), 289-306 and 322.
- Ron Knott, Sumthing about Fibonacci Numbers
- Neville Robbins, Fibonacci partitions, Fib. Quart. 34 (4) (1996), 306-313.
- Jeffrey Shallit, Number theory and formal languages, in D. A. Hejhal, J. Friedman, M. C. Gutzwiller and A. M. Odlyzko, eds., Emerging Applications of Number Theory, IMA Volumes in Mathematics and Its Applications, V. 109, Springer-Verlag, 1999, pp. 547-570. (Eq. 9.2.)
- Jeffrey Shallit, Robbins and Ardila meet Berstel, Arxiv preprint arXiv:2007.14930 [math.CO], 2020.
- Paul K. Stockmeyer, A Smooth Tight Upper Bound for the Fibonacci Representation Function R(N), Fibonacci Quarterly, Volume 46/47, Number 2, May 2009.
- Scott V. Tezlaf, On ordinal dynamics and the multiplicity of transfinite cardinality, arXiv:1806.00331 [math.NT], 2018. See p. 42.
Programs
-
Haskell
a000119 = p $ drop 2 a000045_list where p _ 0 = 1 p (f:fs) m = if m < f then 0 else p fs (m - f) + p fs m -- Reinhard Zumkeller, Dec 28 2012, Oct 21 2011
-
Maple
with(combinat): p := product((1+x^fibonacci(i)), i=2..25): s := series(p,x,1000): for k from 0 to 250 do printf(`%d,`,coeff(s,x,k)) od: # James Sellers, May 29 2000
-
Mathematica
CoefficientList[ Normal@Series[ Product[ 1+z^Fibonacci[ k ], {k, 2, 13} ], {z, 0, 233} ], z ] nmax = 104; s = Union@Table[Fibonacci[n], {n, nmax}]; Table[Length@Select[IntegerPartitions[n, All, s], DeleteDuplicates[#] == # &], {n, 0, nmax}] (* Robert Price, Aug 17 2020 *)
-
PARI
a(n)=local(A,m,f); if(n<0,0,A=1+x*O(x^n); m=2; while((f=fibonacci(m))<=n,A*=1+x^f; m++); polcoeff(A,n))
-
PARI
f(x,y,z)=if(x
Charles R Greathouse IV, Dec 14 2015
Formula
a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), b(k) = Sum_{f} (-1)^(k/f+1)*f, where the last sum is taken over all Fibonacci numbers f dividing k. - Vladeta Jovovic, Aug 28 2002
a(n) = 1, if n <= 2; a(n) = a(Fibonacci(i-2)+k)+a(k) if n>2 and 0<=k2 and Fibonacci(i-3)<=kA000045) <= n and k=n-Fibonacci(i). [Bicknell-Johnson] - Ron Knott, Dec 06 2004
a(n) = f(n,1,1) with f(x,y,z) = if xReinhard Zumkeller, Nov 11 2009
G.f.: Product_{n>=1} 1 + q^F(n+1) = 1 + Sum_{n>=1} ( q^F(n+1) * Product_{k=1..n-1} 1 + q^F(k+1) ). - Joerg Arndt, Oct 20 2012
a(A000071(n)) = 1. - Reinhard Zumkeller, Dec 28 2012
Extensions
More terms from James Sellers, May 29 2000
Comments