A000126 A nonlinear binomial sum.
1, 2, 4, 8, 15, 27, 47, 80, 134, 222, 365, 597, 973, 1582, 2568, 4164, 6747, 10927, 17691, 28636, 46346, 75002, 121369, 196393, 317785, 514202, 832012, 1346240, 2178279, 3524547, 5702855, 9227432, 14930318, 24157782, 39088133, 63245949
Offset: 1
References
- Ralph P. Grimaldi, A generalization of the Fibonacci sequence. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 54 (1986), 123--128. MR0885268 (89f:11030). - N. J. A. Sloane, Apr 08 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..201
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 6.
- Alvaro Carbonero, Beth Anne Castellano, Gary Gordon, Charles Kulick, Karie Schmitz, and Brittany Shelton, Permutations of point sets in R^d, arXiv:2106.14140 [math.CO], 2021.
- Tamsin Forbes and Tony Forbes, Hanoi revisited, Math. Gaz. 100, No. 549, 435-441 (2016).
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298, doi: 10.1080/00150517.1965.12431407.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Programs
-
GAP
List([1..40], n-> Fibonacci(n+3)-(n+1)); # G. C. Greubel, Jul 09 2019
-
Magma
[Fibonacci(n+3)-(n+1): n in [1..40]]; // G. C. Greubel, Jul 09 2019
-
Maple
a:= n-> (Matrix([[1,1,1,2]]). Matrix(4, (i,j)-> if (i=j-1) then 1 elif j=1 then [3,-2,-1,1][i] else 0 fi)^n)[1,2]; seq(a(n), n=1..36); # Alois P. Heinz, Aug 26 2008 # alternative A000126 := proc(n) combinat[fibonacci](n+3)-n-1 ; end proc: seq(A000126(n),n=1..40) ; # R. J. Mathar, Aug 05 2022
-
Mathematica
LinearRecurrence[{3,-2,-1,1},{1,2,4,8},40] (* or *) CoefficientList[ Series[-(1-x+x^3)/((x^2+x-1)(x-1)^2),{x,0,40}],x] (* Harvey P. Dale, Apr 24 2011 *) Table[Length[Select[Subsets[Range[n]],Min@@Abs[Subtract@@@Partition[#,2,1,1]]>1&]],{n,15}] (* Gus Wiseman, Feb 10 2019 *)
-
PARI
Vec((1-x+x^3)/(1-x-x^2)/(1-x)^2+O(x^40)) \\ Charles R Greathouse IV, Oct 06 2011
-
PARI
vector(40, n, fibonacci(n+3) -(n+1)) \\ G. C. Greubel, Jul 09 2019
-
Python
def seq(n): if n < 0: return 1 a, b = 1, 1 for i in range(n + 1): a, b = b, a + b + i return a [seq(i) for i in range(n)] # Reza K Ghazi, Mar 03 2019
-
Sage
[fibonacci(n+3)-(n+1) for n in (1..40)] # G. C. Greubel, Jul 09 2019
Formula
G.f.: (1 - x + x^3 ) / (( 1 - x - x^2 )*( 1 - x )^2). - Simon Plouffe in his 1992 dissertation.
From Henry Bottomley, Oct 22 2001: (Start)
a(n) = Fibonacci(n+3) - (n+1) = a(n-1) + a(n-2) + n - 2
a(n) = 2*a(n-1) - a(n-3) + 1. - Franklin T. Adams-Watters, Jan 13 2006
a(n+1) = 1 + Sum_{k=0..n} (Fibonacci(k+2) - 1) = Sum_{k=0..n} Fibonacci(k+2) - n. - Paul Barry, Mar 06 2008
a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). - Harvey P. Dale, May 05 2011
Closed-form without extra leading 1: ((15+7*sqrt(5))*((1+sqrt(5))/2)^n+(15-7*sqrt(5))*((1-sqrt(5))/2)^n-10*n-20)/10; closed-form with extra leading 1: ((20+8*sqrt(5))*((1+sqrt(5))/2)^n+(20-8*sqrt(5))*((1-sqrt(5))/2)^n-20*n-20)/20. - Tim Monahan, Jul 16 2011
G.f. for closed-form with extra leading 1: (1-2*x+x^2+x^3)/((1-x-x^2)*(x-1)^2). - Tim Monahan, Jul 17 2011
Comments