cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000141 Number of ways of writing n as a sum of 6 squares.

Original entry on oeis.org

1, 12, 60, 160, 252, 312, 544, 960, 1020, 876, 1560, 2400, 2080, 2040, 3264, 4160, 4092, 3480, 4380, 7200, 6552, 4608, 8160, 10560, 8224, 7812, 10200, 13120, 12480, 10104, 14144, 19200, 16380, 11520, 17400, 24960, 18396, 16440, 24480, 27200
Offset: 0

Views

Author

Keywords

Comments

The relevant identity for the o.g.f. is theta_3(x)^6 = 1 + 16*Sum_{j>=1} j^2*x^j/(1 + x^(2*j)) - 4*Sum_{j >=0} (-1)^j*(2*j+1)^2 *x^(2*j+1)/(1 - x^(2*j+1)), See the Hardy-Wright reference, p. 315, first equation. - Wolfdieter Lang, Dec 08 2016

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=6 of A122141 and of A319574, 6th column of A286815.

Programs

  • Haskell
    a000141 0 = 1
    a000141 n = 16 * a050470 n - 4 * a002173 n
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Maple
    (sum(x^(m^2),m=-10..10))^6;
    # Alternative:
    A000141list := proc(len) series(JacobiTheta3(0, x)^6, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000141list(40); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[6, n], {n, 0, 40}] (* Ray Chandler, Dec 06 2006 *)
    SquaresR[6,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *)
    EllipticTheta[3, 0, z]^6 + O[z]^40 // CoefficientList[#, z]& (* Jean-François Alcover, Dec 05 2019 *)
  • Python
    from math import prod
    from sympy import factorint
    def A000141(n):
        if n == 0: return 1
        f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(n).items()]
        return (prod((p**(e+1<<1)-c)//(p**2-c) for p, e, c in f)<<2)-prod(((k:=p**2*c)**(e+1)-1)//(k-1) for p, e, c in f)<<2 # Chai Wah Wu, Jun 21 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*6)
    Q.representation_number_list(40) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(z)^6.
a(n) = 4( Sum_{ d|n, d ==3 mod 4} d^2 - Sum_{ d|n, d ==1 mod 4} d^2 ) + 16( Sum_{ d|n, n/d ==1 mod 4} d^2 - Sum_{ d|n, n/d ==3 mod 4} d^2 ) [Jacobi]. [corrected by Sean A. Irvine, Oct 01 2009]
a(n) = 16*A050470(n) - 4*A002173(n). - Michel Marcus, Dec 15 2012
a(n) = (12/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006