A000141 Number of ways of writing n as a sum of 6 squares.
1, 12, 60, 160, 252, 312, 544, 960, 1020, 876, 1560, 2400, 2080, 2040, 3264, 4160, 4092, 3480, 4380, 7200, 6552, 4608, 8160, 10560, 8224, 7812, 10200, 13120, 12480, 10104, 14144, 19200, 16380, 11520, 17400, 24960, 18396, 16440, 24480, 27200
Offset: 0
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- L. Carlitz, Note on sums of four and six squares, Proc. Amer. Math. Soc. 8 (1957), 120-124
- S. H. Chan, An elementary proof of Jacobi's six squares theorem, Amer. Math. Monthly, 111 (2004), 806-811.
- H. H. Chan and C. Krattenthaler, Recent progress in the study of representations of integers as sums of squares, arXiv:math/0407061 [math.NT], 2004.
- Shi-Chao Chen, Congruences for rs(n), Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032.
- Philippe A. J. G. Chevalier, On the discrete geometry of physical quantities, 2013, Preprint submitted to Journal of Geometry and Physics.
- S. C. Milne, Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions and Schur functions, Ramanujan J., 6 (2002), 7-149.
- Index entries for sequences related to sums of squares
Programs
-
Haskell
a000141 0 = 1 a000141 n = 16 * a050470 n - 4 * a002173 n -- Reinhard Zumkeller, Jun 17 2013
-
Maple
(sum(x^(m^2),m=-10..10))^6; # Alternative: A000141list := proc(len) series(JacobiTheta3(0, x)^6, x, len+1); seq(coeff(%, x, j), j=0..len-1) end: A000141list(40); # Peter Luschny, Oct 02 2018
-
Mathematica
Table[SquaresR[6, n], {n, 0, 40}] (* Ray Chandler, Dec 06 2006 *) SquaresR[6,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *) EllipticTheta[3, 0, z]^6 + O[z]^40 // CoefficientList[#, z]& (* Jean-François Alcover, Dec 05 2019 *)
-
Python
from math import prod from sympy import factorint def A000141(n): if n == 0: return 1 f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(n).items()] return (prod((p**(e+1<<1)-c)//(p**2-c) for p, e, c in f)<<2)-prod(((k:=p**2*c)**(e+1)-1)//(k-1) for p, e, c in f)<<2 # Chai Wah Wu, Jun 21 2024
-
Sage
Q = DiagonalQuadraticForm(ZZ, [1]*6) Q.representation_number_list(40) # Peter Luschny, Jun 20 2014
Formula
Expansion of theta_3(z)^6.
a(n) = 4( Sum_{ d|n, d ==3 mod 4} d^2 - Sum_{ d|n, d ==1 mod 4} d^2 ) + 16( Sum_{ d|n, n/d ==1 mod 4} d^2 - Sum_{ d|n, n/d ==3 mod 4} d^2 ) [Jacobi]. [corrected by Sean A. Irvine, Oct 01 2009]
a(n) = (12/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
Extensions
Extended by Ray Chandler, Nov 28 2006
Comments