cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000168 a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).

Original entry on oeis.org

1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0

Views

Author

Keywords

Comments

Number of rooted planar maps with n edges. - Don Knuth, Nov 24 2013
Number of rooted 4-regular planar maps with n vertices.
Also, number of doodles with n crossings, irrespective of the number of loops.
From Karol A. Penson, Sep 02 2010: (Start)
Integral representation as n-th moment of a positive function on the (0,12) segment of the x axis. This representation is unique as it is the solution of the Hausdorff moment problem.
a(n) = Integral_{x=0..12} ((x^n*(4/9)*(1 - x/12)^(3/2)) / (Pi*sqrt(x/3))). (End)
Also, the number of distinct underlying shapes of closed normal linear lambda terms of a given size, where the shape of a lambda term abstracts away from its variable binding. [N. Zeilberger, 2015] - N. J. A. Sloane, Sep 18 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of well-labeled trees (Bona, 2015). - N. J. A. Sloane, Dec 25 2018

Examples

			G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
  • V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
First row of array A101486.
Cf. A005470.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Magma
    [(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
  • Maple
    A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
  • Mathematica
    Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
    a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
    

Formula

G.f. A(z) satisfies A(z) = 1 - 16*z + 18*z*A(z) - 27*z^2*A(z)^2.
G.f.: F(1/2,1;3;12x). - Paul Barry, Feb 04 2009
a(n) = 2*3^n*A000108(n)/(n+2). - Paul Barry, Feb 04 2009
D-finite with recurrence: (n + 1) a(n) = (12 n - 18) a(n - 1). - Simon Plouffe, Feb 09 2012
G.f.: 1/54*(-1+18*x+(-(12*x-1)^3)^(1/2))/x^2. - Simon Plouffe, Feb 09 2012
0 = a(n)*(+144*a(n+1) - 42*a(n+2)) + a(n+1)*(+18*a(n+1) + a(n+2)) if n>=0. - Michael Somos, Jan 31 2014
a(n) ~ 2*(12^n)/((n^2+3*n)*sqrt(Pi*n)). - Peter Luschny, Nov 25 2015
E.g.f.: exp(6*x)*(12*x*BesselI(0,6*x) - (1 + 12*x)*BesselI(1,6*x))/(9*x). - Ilya Gutkovskiy, Feb 01 2017
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 1887/1331 + 3240*arccosec(2*sqrt(3))/(1331*sqrt(11)).
Sum_{n>=0} (-1)^n/a(n) = 1563/2197 - 3240*arccosech(2*sqrt(3))/(2197*sqrt(13)). (End)

Extensions

More terms from Joerg Arndt, Feb 26 2014