A000241 Crossing number of complete graph with n nodes.
0, 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315
Offset: 0
References
- Ábrego, Bernardo M.; Aichholzer, Oswin; Fernández-Merchant, Silvia; Ramos, Pedro; Salazar, Gelasio. The 2-Page Crossing Number of K_n. Discrete Comput. Geom. 49 (2013), no. 4, 747-777. MR3068573
- E. de Klerk, D. V. Pasechnik, and A. Schrijver, "Reduction of Symmetric Semidefinite Programs Using the Regular *-Representation." Math Program. 109 (2007) 613-624.
- Jean-Paul Delahaye, in Pour La Science, Feb. 2013, #424, Logique et Calcul. Le problème de la fabrique de briques. (The problem of the brick factory), in French.
- R. K. Guy, The crossing number of the complete graph, Bull. Malayan Math. Soc., Vol. 7, pp. 68-72, 1960.
- Harary, Frank, and Anthony Hill. "On the number of crossings in a complete graph." Proceedings of the Edinburgh Mathematical Society (Series 2) 13.04 (1963): 333-338.
- T. L. Saaty, The number of intersections in complete graphs, Engrg. Cybernetics 9 (1971), no. 6, 1102-1104 (1972).; translated from Izv. Akad. Nauk SSSR Tehn. Kibernet. 1971, no. 6, 151-154 (Russian). Math. Rev. 58 #21749.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
Links
- Oswin Aichholzer, Another Small but Long Step for Crossing Numbers: cr(13) = 225 and cr(14) = 315, Proceedings of the 33rd Canadian Conference on Computational Geometry (CCCG 2021).
- Martin Balko, Radoslav Fulek, and Jan Kynčl, Crossing numbers and combinatorial characterization of monotone drawings of K_n, arXiv preprint arXiv:1312.3679 [math.CO], 2013. Also Discrete Computat. Geom., 53 (2015), 107-143.
- Drago Bokal, Gasper Fijavz and David R. Wood, The Minor Crossing Number of Graphs with an Excluded Minor, arXiv:math/0609707 [math.CO], 2006.
- J. Dolan et al., su(3) and Zarankiewicz's conjecture
- P. Erdős and R. K. Guy, Crossing Number Problems The American Mathematical Monthly, Vol. 80, No. 1. (1973), pp. 52-58.
- James Grime and Brady Haran, The Brick Factory Problem, Numberphile video (2023).
- Paul C. Kainen, On a problem of P. Erdős, J. Combinatorial Theory 51968 374--377. MR0231744 (38 #72)
- Marc Lackenby, The crossing number of composite knots, arXiv:0805.4706 [math.GT], 2009.
- D. McQuillan and R. B. Richter, A parity theorem for drawings of complete and bipartite graphs, Amer. Math. Monthly, 117 (2010), 267-273.
- A. Owens, On the biplanar crossing number, IEEE Trans. Circuit Theory, 18 (1971), 277-280.
- A. Owens, On the biplanar crossing number, IEEE Trans. Circuit Theory, 18 (1971), 277-280. [Annotated scanned copy]
- Shengjun Pan and R. Bruce Richter, The Crossing Number of K_11 is 100, J. Graph Theory 56 (2) (2007) 128-134.
- R. B. Richter and C. Thomassen, Relations Between Crossing Numbers of Complete and Complete Bipartite Graphs, Amer. Math. Monthly 104 (1997) 131-137.
- Thomas L. Saaty, On polynomials and crossing numbers of complete graphs, J. Combinatorial Theory Ser. A 10 (1971), 183--184. MR0291013 (45 #107)
- T. L. Saaty, The Minimum Number Of Intersections In Complete Graphs, PNAS 1964 52 (3) 688-690.
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Graph Crossing Number
- Eric Weisstein's World of Mathematics, Guy's Conjecture
- Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture
Crossrefs
Formula
a(n) ~ n^4/64 (Guy, Kainen).
Empirical g.f.: -x^5*(1+x+x^2)/(x+1)^3/(x-1)^5, which is the same as the conjectured formula of A. Hill. - Simon Plouffe, Feb 06 2013
Extensions
Bokal et al. link from Jonathan Vos Post, Dec 08 2006
Entry revised by N. J. A. Sloane, Jan 21 2015
Conjectured data values deleted by Eric W. Weisstein, May 01 2019
a(13) and a(14) computed by O. Aichholzer and added by Manfred Scheucher, Apr 24 2024
Comments