cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A307891 Rectilinear crossing number A014540(n) - crossing number A000241(n) of complete graph on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 3, 4, 9, 6, 15, 14, 21, 22, 37, 30, 53, 52, 69, 74, 102, 96
Offset: 1

Views

Author

Ed Pegg Jr, May 03 2019

Keywords

Examples

			For 8 nodes the crossing number is 18 and the rectilinear crossing number is 19.  The difference for 8 nodes is 1.  Thus a(8)=1.
		

Crossrefs

A028723 a(n) = (1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315, 441, 588, 784, 1008, 1296, 1620, 2025, 2475, 3025, 3630, 4356, 5148, 6084, 7098, 8281, 9555, 11025, 12600, 14400, 16320, 18496, 20808, 23409, 26163, 29241, 32490, 36100, 39900, 44100, 48510, 53361, 58443
Offset: 0

Views

Author

Keywords

Comments

It is not known whether A000241 and this sequence agree.
Conjectured to be crossing number of complete graph K_n, see A000241.
a(n+1) is the maximum number of rectangles that can be formed from n lines. - Erich Friedman
Number of symmetric Dyck paths of semilength n and having five peaks. E.g., a(6)=3 because we have U*DU*DUU*DDU*DU*D, U*DUU*DU*DU*DDU*D and UU*DU*DU*DU*DU*DD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
a(n-5) is the number of length n words, w(1), w(2), ..., w(n) on alphabet {0,1,2} such that w(i) >= w(i+2) for all i. - Geoffrey Critzer, Mar 15 2014
a(n-1) is the number of length n binary strings beginning with a 1 that have exactly two pairs of consecutive 0's and two pairs of consecutive 1's. - Jeremy Dover, Jul 04 2016
Consider the partitions of n into two parts (p,q). Then 2*a(n+2) represents the total volume of all rectangular prisms with dimensions p, q and |q - p|. - Wesley Ivan Hurt, Apr 12 2018
a(n+1) is the number of subsets of {1, 2, ..., n} that contain 2 odd and 2 even numbers. For example, for n = 6, a(7) = 9 and the 9 subsets are {1,2,3,4}, {1,2,3,6}, {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,5}, {2,3,5,6}, {3,4,5,6}. - Enrique Navarrete, Dec 22 2019
a(n+1) is the maximum number of induced 4-cycles in an n-node graph (Pippenger and Golumbic 1975). - Pontus von Brömssen, Mar 27 2022

Examples

			G.f. = x^5 + 3*x^6 + 9*x^7 + 18*x^8 + 36*x^9 + 60*x^10 + 100*x^11 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.18, p. 533.
  • Martin Gardner, Knotted Doughnuts and Other Mathematical Entertainments, W. H. Freeman & Company, 1986, Chapter 11, pages 133-144.
  • Carsten Thomassen, Embeddings and Minors, in: R. L. Graham, M. Grötschel, and L. Lovász, Handbook of Combinatorics, Vol. 1, Elsevier, 1995, p. 314.

Crossrefs

Programs

  • Magma
    [(n^4-8*n^3+18*n^2-12*n+2*n*(n-2)*((1+(-1)^n)/2)+(2*n-3)^2*((1-(-1)^n)/2))/64: n in [0..50]]; // Vincenzo Librandi, Mar 23 2014
    
  • Maple
    A028723:=n->(1/4)*floor(n/2)*floor((n-1)/2)*floor((n-2)/2)*floor((n-3)/2); seq(A028723(n), n=0..100); # Wesley Ivan Hurt, Nov 01 2013
  • Mathematica
    Table[If[EvenQ[n], n(n-2)^2(n-4)/64, (n-1)^2(n-3)^2/64], {n, 0, 50}]
    Table[(n^4 -8n^3 +18n^2 -12n + 2n(n-2)((1+(-1)^n)/2) +(2n-3)^2((1-(-1)^n)/2))/64, {n, 0, 50}] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{2, 2,-6,0,6,-2,-2,1}, {0,0,0,0,0,1,3,9}, 50] (* Harvey P. Dale, Sep 13 2018 *)
    Times@@@Table[Floor[(n-k)/2], {n,0,60}, {k,0,3}]/4 (* Eric W. Weisstein, Apr 29 2019 *)
  • PARI
    a(n) = if (n % 2, (n-1)^2 *(n-3)^2/64, n*(n-2)^2 *(n-4)/64); \\ Michel Marcus, Nov 02 2013
    
  • PARI
    {a(n) = prod(k=0, 3, (n - k) \ 2) / 4}; /* Michael Somos, Nov 02 2014 */
    
  • SageMath
    [(n*(-12 +18*n -8*n^2 +n^3) +2*n*(n-2)*((n+1)%2) +(2*n-3)^2*(n%2))/64 for n in (0..60)] # G. C. Greubel, Apr 08 2022

Formula

If n even, n*(n-2)^2*(n-4)/64; if n odd, (n-1)^2*(n-3)^2/64.
G.f.: x^5*(1+x+x^2)/((1-x)^5*(1+x)^3). - Emeric Deutsch, Jan 12 2004
For n>2, a(n) = A007590(n-3)*A007590(n-1)/16. - Richard R. Forberg, Dec 03 2013
a(n) = (n^4 -8*n^3 +18*n^2 -12*n +2*n*(n-2)*((1+(-1)^n)/2) + (2*n-3)^2*((1-(-1)^n)/2))/64. - Luce ETIENNE, Mar 22 2014
Euler transform of length 3 sequence [3, 3, -1]. - Michael Somos, Nov 02 2014
a(n) = a(4-n) for all n in Z. - Michael Somos, Nov 02 2014
0 = -3 + a(n) - a(n+1) - 3*a(n+2) + 3*a(n+3) + 3*a(n+4) - 3*a(n+5) - a(n+6) + a(n+7) for all n in Z. - Michael Somos, Nov 02 2014
0 = a(n)*(+a(n+2) + a(n+3)) + a(n+1)*(-3*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Nov 02 2014
a(n+1)^2 - a(n)*a(n+2) = binomial(n/2, 2)^3 for all even n in Z ( = 0 if n odd). - Michael Somos, Nov 02 2014
a(n)*(a(n+1) + a(n+2)) +a(n+1)*(-3*a(n+1) + a(n+2)) = 0 for all even n in Z ( = k^4 * (k^2 - 1) / 4 if n = 2*k + 1). - Michael Somos, Nov 02 2014
a(n) = binomial(n/2,2)^2, n even; a(n) = binomial((n-1)/2,2)*binomial((n+1)/2,2), n odd. - Enrique Navarrete, Dec 22 2019
E.g.f.: (1/128)*exp(-x)*(exp(2*x)*(9 - 12*x + 8*x^2 - 4*x^3 + 2*x^4) - 9 - 6*x - 2*x^2). - Stefano Spezia, Dec 27 2019
a(n) = A002620(n-1)*A002620(n-3)/4. - R. J. Mathar, Mar 23 2021
a(n)= A096338(n-6)+A096338(n-5)+A096338(n-4). - R. J. Mathar, Mar 23 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=5} 1/a(n) = 2*Pi^2/3 - 5.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*Pi^2 - 19. (End)

A030179 Quarter-squares squared: A002620^2.

Original entry on oeis.org

0, 0, 1, 4, 16, 36, 81, 144, 256, 400, 625, 900, 1296, 1764, 2401, 3136, 4096, 5184, 6561, 8100, 10000, 12100, 14641, 17424, 20736, 24336, 28561, 33124, 38416, 44100, 50625, 57600, 65536, 73984, 83521, 93636, 104976, 116964
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2002

Keywords

Comments

Conjectured to be crossing number of complete bipartite graph K_{n,n}. Known to be true for n <= 7.
If the Zarankiewicz conjecture is true, then a(n) is also the rectilinear crossing number of K_{n,n}. - Eric W. Weisstein, Apr 24 2017
a(n+1) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n}, and w,x,y+1,z+1 all even. - Clark Kimberling, May 29 2012

References

  • C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.

Crossrefs

Programs

Formula

a(n) = floor(n^2/4)^2.
From R. J. Mathar, Jul 08 2010: (Start)
G.f.: x^2*(1+2*x+6*x^2+2*x^3+x^4) / ( (1+x)^3*(1-x)^5 ).
a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8). (End)
a(n) = (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32. - Luce ETIENNE, Aug 11 2014
Sum_{n>=2} 1/a(n) = Pi^4/90 + Pi^2/3 - 3. - Amiram Eldar, Sep 17 2023

A014540 Rectilinear crossing number of complete graph on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 9, 19, 36, 62, 102, 153, 229, 324, 447, 603, 798, 1029, 1318, 1657, 2055, 2528, 3077, 3699, 4430, 5250, 6180
Offset: 1

Views

Author

Keywords

Comments

The values a(19) and a(21) were obtained by Aichholzer et al. in 2006. The value a(18) is claimed by the Rectilinear Crossing Number project after months of distributed computing. This was confirmed by Abrego et al., they also found the values a(20) and a(22) to a(27). The next unknown entry, a(28), is either 7233 or 7234. - Bernardo M. Abrego (bernardo.abrego(AT)csun.edu), May 05 2008

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.18, p. 532.
  • M. Gardner, Crossing Numbers. Ch. 11 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, 1986.
  • C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.

Crossrefs

Extensions

102 from Oswin Aichholzer (oswin.aichholzer(AT)tugraz.at), Aug 14 2001
153 from Hannes Krasser (hkrasser(AT)igi.tu-graz.ac.at), Sep 17 2001
More terms from Eric W. Weisstein, Nov 30 2006
More terms from Bernardo M. Abrego (bernardo.abrego(AT)csun.edu), May 05 2008

A053873 Numbers n such that OEIS sequence A_n contains n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 14, 16, 19, 26, 27, 36, 37, 52, 59, 62, 69, 72, 115, 119, 120, 121, 134, 161, 164, 174, 177, 188, 189, 190, 193, 194, 195, 196, 209, 224, 265, 267, 277
Offset: 1

Views

Author

Jens Voß, Mar 30 2000

Keywords

Comments

A number n is in this sequence iff n appears anywhere in the terms of A_n, not just in the terms that are visible in the entry.
Is 53873 in this sequence? (A rhetorical question!) - Tanya Khovanova, Aug 09 2007
Is 53169 in this sequence? (A rhetorical question!). - Raymond Wang, Oct 07 2008
I skipped 241 since it appears that A000241(14) > 241, but as the 13th and further terms are not known this is not certain. The next term in the sequence is almost surely 319, but finding the least k for which A000319(k) = 319 requires calculating a chaotic sequence to high precision. - Charles R Greathouse IV, Jul 20 2007
241 is not in this sequence, since A000241(13) <= 225 and A000241(14) >= 0.8594*315 (see comments in A000241). - Danny Rorabaugh, Mar 13 2015

Examples

			4 is not in A000004, so 4 is not in this sequence.
60 is not in A000060, so 60 is not in this sequence.
86 is not in A000086, so 86 is not in this sequence.
		

Crossrefs

Complement of A053169.

Extensions

More terms from N. J. A. Sloane, Aug 24 2006
a(23)-a(25) from Charles R Greathouse IV, Aug 30 2006
a(26)-a(40) from Charles R Greathouse IV, Jul 20 2007
Typo in one entry corrected by Olaf Voß, Feb 25 2008

A007333 An upper bound on the biplanar crossing number of the complete graph on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 4, 7, 12, 18, 37, 53, 75, 100, 152, 198, 256, 320, 430, 530, 650, 780, 980, 1165, 1380, 1610, 1939, 2247, 2597, 2968, 3472, 3948, 4480, 5040, 5772, 6468, 7236, 8040, 9060, 10035, 11100, 12210, 13585, 14905, 16335, 17820, 19624, 21362
Offset: 1

Views

Author

Keywords

Comments

This bound in based on a particular decomposition of K_n (see Owens for details). The actual biplanar crossing number for K_9 is 1 (not 4 as given by this bound). - Sean A. Irvine, Dec 30 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1},{0,0,0,0,0,0,0,0,4,7,12,18,37,53},70] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    concat([0,0,0,0,0,0,0,0], Vec(x^9*(4 - x + 2*x^2 + x^3 + x^4) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3) + O(x^40))) \\ Colin Barker, Feb 02 2020

Formula

a(4*k) = k * (k-1) * (k-2) * (7*k-3) / 6, a(4*k+1) = k * (k-1) * (7*k^2-10*k+4) / 6, a(4*k+2) = k * (k-1) * (7*k^2-3*k-1) / 6, a(4*k+3) = k^2 * (k-1) * (7*k+4) / 6 [from Owens]. - Sean A. Irvine, Dec 30 2019; [typo corrected by Colin Barker, Feb 01 2020]
From Colin Barker, Jan 28 2020: (Start)
G.f.: x^9*(4 - x + 2*x^2 + x^3 + x^4) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^3).
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14) for n>14.
(End)

Extensions

More terms and title clarified by Sean A. Irvine, Dec 30 2019

A145118 Denominator polynomials for continued fraction generating function for n!.

Original entry on oeis.org

1, 1, 1, -1, 1, -2, 1, -4, 2, 1, -6, 6, 1, -9, 18, -6, 1, -12, 36, -24, 1, -16, 72, -96, 24, 1, -20, 120, -240, 120, 1, -25, 200, -600, 600, -120, 1, -30, 300, -1200, 1800, -720, 1, -36, 450, -2400, 5400, -4320, 720, 1, -42, 630, -4200, 12600, -15120
Offset: 0

Views

Author

Paul Barry, Oct 02 2008

Keywords

Comments

Row sums are A056920. T(n,1) gives quarter squares A002620. T(n,2) appears to coincide with 2*A000241(n+1).

Examples

			Triangle begins:
1;
1;
1,  -1;
1,  -2;
1,  -4,   2;
1,  -6,   6;
1,  -9,  18,    -6;
1, -12,  36,   -24;
1, -16,  72,   -96,   24;
1, -20, 120,  -240,  120;
1, -25, 200,  -600,  600,  -120;
1, -30, 300, -1200, 1800,  -720;
1, -36, 450, -2400, 5400, -4320, 720;
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> (-1)^k* binomial(iquo(n+1, 2),k) *binomial(iquo(n, 2), k)*k!:
    seq (seq (T(n, k), k=0..iquo(n, 2)), n=0..16);  # Alois P. Heinz, Dec 04 2012

Formula

T(n,k) = (-1)^k C(floor((n+1)/2),k) * C(floor(n/2),k)*k!.

A191928 Array read by antidiagonals: T(m,n) = floor(m/2)*floor((m-1)/2)*floor(n/2)*floor((n-1)/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 6, 8, 8, 6, 0, 0, 0, 0, 0, 0, 9, 12, 16, 12, 9, 0, 0, 0, 0, 0, 0, 12, 18, 24, 24, 18, 12, 0, 0, 0, 0, 0, 0, 16, 24, 36, 36, 36, 24, 16, 0, 0, 0, 0, 0, 0, 20, 32, 48, 54, 54, 48, 32, 20, 0, 0, 0, 0, 0, 0, 25, 40, 64, 72, 81, 72, 64, 40, 25, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 19 2011

Keywords

Comments

T(m,n) is conjectured to be the crossing number of the complete bipartite graph K_{m,n}.

Examples

			Array begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 1, 2, 4, 6, 9, 12, ...
0, 0, 0, 2, 4, 8, 12, 18, 24, ...
0, 0, 0, 4, 8, 16, 24, 36, 48, ...
0, 0, 0, 6, 12, 24, 36, 54, 72, ...
0, 0, 0, 9, 18, 36, 54, 81, 108, ...
0, 0, 0, 12, 24, 48, 72, 108, 144, ...
		

Crossrefs

Programs

  • Maple
    K:=(m,n)->floor(m/2)*floor((m-1)/2)*floor(n/2)*floor((n-1)/2);
  • PARI
    T(n,k) = ((n-1)^2\4)*((k-1)^2\4);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Sep 30 2017

Formula

T(m,n) = A002620(m-1)*A002620(n-1). - Michel Marcus, Sep 30 2017

A276109 The number of non-isomorphic drawings of the complete graph K_n such that any two edges intersect at most once (a.k.a. "good drawings" or "simple topological graphs").

Original entry on oeis.org

1, 2, 5, 121, 46999, 502090394
Offset: 3

Views

Author

Manfred Scheucher, Aug 18 2016

Keywords

References

  • H.-D. O. F. Gronau and H. Harborth, Numbers of nonisomorphic drawings for small graphs, Congressus Numerantium, 71:105-114, 1990.
  • H. Harborth and I. Mengersen, Drawings of the complete graph with maximum number of crossings, Congressus Numerantium, 88:225-228, 1992.

Crossrefs

Cf. A000241.
Coincides with A276110 for n <= 5.

A121021 Number of crossing-optimal drawings of the complete graph K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 5, 3, 3080, 5679
Offset: 0

Views

Author

David Applegate, Sep 08 2006

Keywords

Comments

a(11) is at least 10^6.

Examples

			a(5)=1 because all drawings of K_5 with only 1 crossing are isomorphic.
		

References

  • Shengjun Pan and R. Bruce Richter, in "The Crossing Number of K_11 is 100", submitted.

Crossrefs

Cf. A000241.
Showing 1-10 of 13 results. Next