A298445
Triangle T(n,k) read by rows: number of n-node simple graphs with rectilinear crossing number k (k=0..A014540(n)).
Original entry on oeis.org
1, 2, 4, 11, 33, 1, 142, 12, 1, 1, 822, 162, 39, 16, 1, 2, 1, 0, 0, 1, 6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1, 79853
Offset: 1
Triangle begins:
1
2
4
11
33, 1
142, 12, 1, 1
822, 162, 39, 16, 1, 2, 1, 0, 0, 1
6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1
Cf.
A014540 (rectilinear crossing number for K_n).
Cf.
A298446 (counts for simple connected graphs).
Cf.
A307071 (number of simple graphs with crossing number 1).
A298446
Triangle T(n,k) read by rows: number of n-node connected graphs with rectilinear crossing number k (k=0..A014540(n)).
Original entry on oeis.org
1, 1, 2, 6, 20, 1, 99, 11, 1, 1, 646, 149, 38, 15, 1, 2, 1, 0, 0, 1, 5974, 3008, 1251, 542, 171, 80, 47, 12, 15, 7, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1, 71885
Offset: 1
Triangle begins:
1
1
2
6
20,1
99,11,1,1
646,149,38,15,1,2,1,0,0,1
5974,3008,1251,542,171,80,47,12,15,7,4,1,3,0,0,1,0,0,0,1
Cf.
A014540 (rectilinear crossing number for K_n).
Cf.
A298445 (counts for simple graph).
A135515
Number of inequivalent drawings of the complete graph Kn on n vertices that attain the corresponding rectilinear crossing number (A014540).
Original entry on oeis.org
1, 1, 1, 3, 2, 10, 2, 374
Offset: 4
Don Pedro Esq. (info(AT)servierlaboratories.org), Feb 09 2008
A307891
Rectilinear crossing number A014540(n) - crossing number A000241(n) of complete graph on n nodes.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 3, 4, 9, 6, 15, 14, 21, 22, 37, 30, 53, 52, 69, 74, 102, 96
Offset: 1
For 8 nodes the crossing number is 18 and the rectilinear crossing number is 19. The difference for 8 nodes is 1. Thus a(8)=1.
A030179
Quarter-squares squared: A002620^2.
Original entry on oeis.org
0, 0, 1, 4, 16, 36, 81, 144, 256, 400, 625, 900, 1296, 1764, 2401, 3136, 4096, 5184, 6561, 8100, 10000, 12100, 14641, 17424, 20736, 24336, 28561, 33124, 38416, 44100, 50625, 57600, 65536, 73984, 83521, 93636, 104976, 116964
Offset: 0
- C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- G. Xiao, Contfrac.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Eric Weisstein's World of Mathematics, Rectilinear Crossing Number.
- Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
List([0..40], n-> (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32); # G. C. Greubel, Dec 28 2019
-
[(Floor(n^2/4))^2: n in [0..40]]; // G. C. Greubel, Dec 28 2019
-
seq( (2*n^4 -2*n^2 +1 +(-1)^n*(2*n^2 -1))/32, n=0..40); # G. C. Greubel, Dec 28 2019
-
f[n_]:=Floor[n^2/2]; Table[Nest[f,n,2],{n,5!}]/2 (* Vladimir Joseph Stephan Orlovsky, Mar 10 2010 *)
LinearRecurrence[{2,2,-6,0,6,-2,-2,1}, {0,0,1,4,16,36,81,144}, 40] (* Harvey P. Dale, Apr 26 2011 *)
Floor[Range[0, 30]^2/4]^2 (* Eric W. Weisstein, Apr 24 2017 *)
-
a(n) = (n^2\4)^2 \\ Charles R Greathouse IV, Jun 11 2015
-
[floor(n^2/4)^2 for n in (0..40)] # G. C. Greubel, Dec 28 2019
A000241
Crossing number of complete graph with n nodes.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 3, 9, 18, 36, 60, 100, 150, 225, 315
Offset: 0
- Ábrego, Bernardo M.; Aichholzer, Oswin; Fernández-Merchant, Silvia; Ramos, Pedro; Salazar, Gelasio. The 2-Page Crossing Number of K_n. Discrete Comput. Geom. 49 (2013), no. 4, 747-777. MR3068573
- E. de Klerk, D. V. Pasechnik, and A. Schrijver, "Reduction of Symmetric Semidefinite Programs Using the Regular *-Representation." Math Program. 109 (2007) 613-624.
- Jean-Paul Delahaye, in Pour La Science, Feb. 2013, #424, Logique et Calcul. Le problème de la fabrique de briques. (The problem of the brick factory), in French.
- R. K. Guy, The crossing number of the complete graph, Bull. Malayan Math. Soc., Vol. 7, pp. 68-72, 1960.
- Harary, Frank, and Anthony Hill. "On the number of crossings in a complete graph." Proceedings of the Edinburgh Mathematical Society (Series 2) 13.04 (1963): 333-338.
- T. L. Saaty, The number of intersections in complete graphs, Engrg. Cybernetics 9 (1971), no. 6, 1102-1104 (1972).; translated from Izv. Akad. Nauk SSSR Tehn. Kibernet. 1971, no. 6, 151-154 (Russian). Math. Rev. 58 #21749.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
- Oswin Aichholzer, Another Small but Long Step for Crossing Numbers: cr(13) = 225 and cr(14) = 315, Proceedings of the 33rd Canadian Conference on Computational Geometry (CCCG 2021).
- Martin Balko, Radoslav Fulek, and Jan Kynčl, Crossing numbers and combinatorial characterization of monotone drawings of K_n, arXiv preprint arXiv:1312.3679 [math.CO], 2013. Also Discrete Computat. Geom., 53 (2015), 107-143.
- Drago Bokal, Gasper Fijavz and David R. Wood, The Minor Crossing Number of Graphs with an Excluded Minor, arXiv:math/0609707 [math.CO], 2006.
- J. Dolan et al., su(3) and Zarankiewicz's conjecture
- P. Erdős and R. K. Guy, Crossing Number Problems The American Mathematical Monthly, Vol. 80, No. 1. (1973), pp. 52-58.
- James Grime and Brady Haran, The Brick Factory Problem, Numberphile video (2023).
- Paul C. Kainen, On a problem of P. Erdős, J. Combinatorial Theory 51968 374--377. MR0231744 (38 #72)
- Marc Lackenby, The crossing number of composite knots, arXiv:0805.4706 [math.GT], 2009.
- D. McQuillan and R. B. Richter, A parity theorem for drawings of complete and bipartite graphs, Amer. Math. Monthly, 117 (2010), 267-273.
- A. Owens, On the biplanar crossing number, IEEE Trans. Circuit Theory, 18 (1971), 277-280.
- A. Owens, On the biplanar crossing number, IEEE Trans. Circuit Theory, 18 (1971), 277-280. [Annotated scanned copy]
- Shengjun Pan and R. Bruce Richter, The Crossing Number of K_11 is 100, J. Graph Theory 56 (2) (2007) 128-134.
- R. B. Richter and C. Thomassen, Relations Between Crossing Numbers of Complete and Complete Bipartite Graphs, Amer. Math. Monthly 104 (1997) 131-137.
- Thomas L. Saaty, On polynomials and crossing numbers of complete graphs, J. Combinatorial Theory Ser. A 10 (1971), 183--184. MR0291013 (45 #107)
- T. L. Saaty, The Minimum Number Of Intersections In Complete Graphs, PNAS 1964 52 (3) 688-690.
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Graph Crossing Number
- Eric Weisstein's World of Mathematics, Guy's Conjecture
- Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture
It is conjectured that this sequence coincides with
A028723.
a(13) and a(14) computed by O. Aichholzer and added by
Manfred Scheucher, Apr 24 2024
A006247
Number of simple arrangements of n pseudolines in the projective plane with a marked cell. Number of Euclidean pseudo-order types: nondegenerate abstract order types of configurations of n points in the plane.
Original entry on oeis.org
1, 1, 1, 2, 3, 16, 135, 3315, 158830, 14320182, 2343203071, 691470685682, 366477801792538
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- O. Aichholzer, Order Types for Small Point Sets
- O. Aichholzer, F. Aurenhammer and H. Krasser, Enumerating order types for small point sets with applications, In Proc. 17th Ann. ACM Symp. Computational Geometry, pages 11-18, Medford, Massachusetts, USA, 2001. [Computes a(10)]
- Stefan Felsner and Jacob E. Goodman, Pseudoline Arrangements, Chapter 5 of Handbook of Discrete and Computational Geometry, CRC Press, 2017, see Table 5.6.1. [Specific reference for this sequence] - _N. J. A. Sloane_, Nov 14 2023
- J. Ferté, V. Pilaud and M. Pocchiola, On the number of simple arrangements of five double pseudolines, arXiv:1009.1575 [cs.CG], 2010; Discrete Comput. Geom. 45 (2011), 279-302.
- Lukas Finschi, A Graph Theoretical Approach for Reconstruction and Generation of Oriented Matroids, A dissertation submitted to the Swiss Federal Institute of Technology, Zurich for the degree of Doctor of Mathematics, 2001.
- Lukas Finschi, Homepage of Oriented Matroids
- L. Finschi and K. Fukuda, Complete combinatorial generation of small point set configurations and hyperplane arrangements, pp. 97-100 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- Henry Förster, Philipp Kindermann, Tillmann Miltzow, Irene Parada, Soeren Terziadis, and Birgit Vogtenhuber, Geometric Thickness of Multigraphs is (exists in reals)-complete, arXiv:2312.05010 [cs.CG], 2023.
- Jacob E. Goodman, Joseph O'Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry [alternative link], CRC Press, 2017, see Table 5.6.1. [General reference for 2017 edition of the Handbook] - _N. J. A. Sloane_, Nov 14 2023
- J. E. Goodman and R. Pollack, Semispaces of configurations, cell complexes of arrangements, J. Combin. Theory, A 37 (1984), 257-293.
- D. E. Knuth, Axioms and hulls, Lect. Notes Comp. Sci., Vol. 606.
- Alexander Pilz and Emo Welzl, Order on order types, Discrete & Computational Geometry, 59 (No. 4, 2015), 886-922.
- Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner, A Note On Universal Point Sets for Planar Graphs, arXiv:1811.06482 [math.CO], 2018.
a(11) from Franz Aurenhammer (auren(AT)igi.tu-graz.ac.at), Feb 05 2002
A063542
Least number of empty convex quadrilaterals (4-gons) determined by n points in the plane.
Original entry on oeis.org
0, 1, 3, 6, 10, 15, 23, 32, 42, 51
Offset: 4
- K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU Braunschweig, Germany, 1987.
- O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower bounds for the number of small convex k-holes. Computational Geometry: Theory and Applications, 47(5):605-613, 2014.
- O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, B. Vogtenhuber, A set of 12 points minimizing the numbers of convex 3-, 4-, and 5-holes.
- O. Aichholzer, T. Hackl, and M. Scheucher, A set of 13 points minimizing the numbers of convex 3-, 4-, and 5-holes.
- M. Scheucher, Counting Convex 5-Holes, Bachelor's thesis, Graz University of Technology, Austria, 2013, in German.
Cf.
A063541 and
A276096 for empty convex 3- and 5-gons (a.k.a. k-holes), respectively. The rectilinear crossing number
A014540 is the number of (not necessarily empty) convex quadrilaterals.
Showing 1-8 of 8 results.
Comments