A000258 Expansion of e.g.f. exp(exp(exp(x)-1)-1).
1, 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137, 16733779, 188378402, 2276423485, 29367807524, 402577243425, 5840190914957, 89345001017415, 1436904211547895, 24227076487779802, 427187837301557598, 7859930038606521508, 150601795280158255827
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 12*x^3 + 60*x^4 + 358*x^5 + 2471*x^6 + 19302*x^7 + ...
References
- J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..475 (first 101 terms from T. D. Noe)
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Brauer and Jones tied monoids, arXiv:2107.04170 [math.RT], 2021.
- P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron, D. A. Gewurz and F. Merola, Product action, Discrete Math., 308 (2008), 386-394.
- Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy]
- Gottfried Helms, Bell Numbers, 2008.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
- T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 70
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 292
- A. Joseph Kennedy, Class partition algebras as centralizer algebras, Communications in Algebra, 35 (2007), 145-170, see page 153.
- A. Joseph Kennedy, P. Jaish, and P. Sundaresan, Note on generating function of higher dimensional bell numbers (sic), Malaya Journal of Matematik (2020) Vol.8, No. 2, 369-372.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- T. Mansour, A. Munagi, and M. Shattuck, Recurrence Relations and Two-Dimensional Set Partitions , J. Int. Seq. 14 (2011) #11.4.1.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003, [J. Phys. A 37 (2004), 3475-3487].
- John Riordan, Letter, Apr 28 1976.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003, [Order 21 (2004), 83-89].
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(Exp(x)-1)-1))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Feb 01 2020 -
Maple
with(combinat, bell, stirling2): seq(add(stirling2(n,k)*(bell(k)), k=0..n),n=0..30); with(combstruct); SetSetSetL := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},labeled]; # alternative Maple program: b:= proc(n, t) option remember; `if`(n=0 or t=0, 1, add( b(n-j, t)*b(j, t-1)*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 2): seq(a(n), n=0..23); # Alois P. Heinz, Sep 02 2021
-
Mathematica
nn = 20; Range[0, nn]! CoefficientList[Series[Exp[Exp[Exp[x] - 1] - 1], {x, 0, nn}], x] a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp[ Exp[x] - 1] - 1] , {x, 0, n}]]; (* Michael Somos, Aug 15 2015 *) a[n_] := Sum[StirlingS2[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *) Table[Sum[BellY[n, k, BellB[Range[n]]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
-
Maxima
makelist(sum(stirling2(n,k)*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
Formula
a(n) = |A039811(n, 1)| (first column of triangle).
a(n) = Sum_{k=0..n} Stirling2(n, k)*Bell(k). - Detlef Pauly (dettodet(AT)yahoo.de), Jun 06 2002
Representation as an infinite series (Dobinski-type formula), in Maple notation: a(n)=exp(exp(-1)-1)*sum(evalf(sum(p!*stirling2(k, p)*exp(-p), p=1..k))*k^n/k!, k=0..infinity), n=1, 2, ... . - Karol A. Penson, Nov 28 2003
a(n) = Sum_{k=0..n} A055896(n,k). - R. J. Mathar, Apr 15 2008
G.f.: Sum_{j>=0} Bell(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019
Comments