cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A235606 Shanks's array d_{a,n} (a >= 1, n >= 1) that generalizes the tangent numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 2, 11, 16, 4, 46, 361, 272, 4, 128, 3362, 24611, 7936, 6, 272, 16384, 515086, 2873041, 353792, 8, 522, 55744, 4456448, 135274562, 512343611, 22368256, 8, 904, 152166, 23750912, 2080374784, 54276473326, 129570724921, 1903757312, 12, 1408, 355688
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000182: 1,  2,    16,      272,        7936,         353792, ...
A000464: 1, 11,   361,    24611,     2873041,      512343611, ...
A000191: 2, 46,  3362,   515086,   135274562,    54276473326, ...
A000318: 4,128, 16384,  4456448,  2080374784,  1483911200768, ...
A000320: 4,272, 55744, 23750912, 17328937984, 19313964388352, ...
A000411: 6,522,152166, 93241002, 97949265606,157201459863882, ...
A064072: 8,904,355688,296327464,423645846728,925434038426824, ...
...
		

References

  • D. Shanks. "Generalized Euler and Class Numbers." Math. Comput. 21, 689-694, 1967. Math. Comput. 22, 699, 1968.

Crossrefs

Rows: A000182 (tangent numbers), A000464, A000191, A000318, A000320, A000411, A064072-A064075, ...
Columns: A000061, A000176, A000488, A000518, ...
Cf. A235605.

Programs

  • Mathematica
    amax = nmax = 10; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; d[1, n_, km_] := 2(2n-1)! L[-1, 2n, km] (2/Pi)^(2n) // Round; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/ Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[a, n, km], {a, 1, amax}, {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2km]]; A235606 = dd[km]; Table[A235606[[ a-n+1, n]], {a, 1, amax}, {n, 1, a}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    dds[b_, nm_] := With[{ns = Range[nm]}, (-1)^(ns - 1) If[Mod[b, 4] == 1, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns - 1), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[b, 2 k + 1] (b - (2 k + 1))^(2 ns - 1), {k, 0, (b - 2)/2}]]];
    dsfs[1, nm_] := dsfs[1, nm] = (2 Range[nm] - 1)! CoefficientList[Series[Tan[x], {x, 0, 2 nm - 1}]/x, x^2];
    dsfs[b_, nm_] := dsfs[b, nm] = Fold[Function[{ds, dd}, Append[ds, dd - Sum[ds[[-i]] (-b^2)^i Binomial[2 Length[ds] + 1, 2 i], {i, Length[ds]}]]], {}, dds[b, nm]];
    rowA235606[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, dsfs[b, nm], If[b == 1, 1/2, 1] dsfs[b, nm] Sqrt[a/b]^(4 ns - 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[b, p]/p^(2 ns)]]]];
    arr = Table[rowA235606[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n]], {r, Length[arr]}, {n, r}]] (* Matthew House, Oct 30 2024 *)

Formula

Shanks gives recurrences.

Extensions

More terms from Lars Blomberg, Sep 07 2015

A000320 Generalized tangent numbers d(5,n).

Original entry on oeis.org

4, 272, 55744, 23750912, 17328937984, 19313964388352, 30527905292468224, 64955605537174126592, 179013508069217017790464, 620314831396713435870789632, 2639743384489464189324523208704, 13533573366345611477262311433961472, 82274260343572247169162187576069586944
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(5*x)*(sin(x) + sin(3*x)): ser := series(egf, x, 26):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..13); # Peter Luschny, Nov 21 2021
  • Mathematica
    nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2k+1)^s, {k, 0, km}]; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[5, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000320 = dd[km] (* Jean-François Alcover, Feb 07 2016 *)

Formula

a(n) = (2*n-1)!*[x^(2*n-1)](sec(5*x)*(sin(x) + sin(3*x))). - Peter Luschny, Nov 21 2021

Extensions

Formula producing A000326, rather than this sequence, deleted by Sean A. Irvine, Sep 09 2010
a(10)-a(13) from Lars Blomberg, Sep 07 2015

A000490 Generalized Euler numbers c(4,n).

Original entry on oeis.org

1, 16, 1280, 249856, 90767360, 52975108096, 45344872202240, 53515555843342336, 83285910482761809920, 165262072909347030040576, 407227428060372417275494400, 1219998300294918683087199010816, 4366953142363907901751614431559680, 18406538229888710811704852978971181056
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(4*x): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0 = 4; nmax = 20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2*k+1]/(2*k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2*n +1)*Pi^(-(2*n)-1)*(2*n)!*a^(2*n+1/2)*L[a, 2*n+1, km] // Round; cc[km_] := cc[km] = Table[c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000490 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)
    Range[0, 26, 2]! CoefficientList[Series[Sec[4 x], {x, 0, 26}], x^2] (* Matthew House, Oct 05 2024 *)

Formula

a(n) = A000364(n)*16^n. - Philippe Deléham, Oct 27 2006
a(n) = (2*n)!*[x^(2*n)](sec(4*x)). - Peter Luschny, Nov 21 2021

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1

Views

Author

Peter Bala, Sep 18 2015

Keywords

Comments

Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.

Examples

			The triangular array begins
1
1   2
1  11     10
1  46    241      108
1 128   2739    10411      2214
1 272  16384   265244    836321       75708
1 522  64964  2883584  45094565   112567243     3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
		

Crossrefs

Cf. A000182 (d(1,n)), A000464 (d(2,n)), A000191 (d(3,n)), A000318 (d(4,n)), A000320 (d(5,n)), A000411 (d(6,n)), A064072 (d(7,n)), A235605, A235606, A262143, A262145 (row 1 of square array).
Showing 1-5 of 5 results.