A000324 A nonlinear recurrence: a(0) = 1, a(1) = 5, a(n) = a(n-1)^2 - 4*a(n-1) + 4 for n>1.
1, 5, 9, 49, 2209, 4870849, 23725150497409, 562882766124611619513723649, 316837008400094222150776738483768236006420971486980609
Offset: 0
References
- Derek Jennings, Some reciprocal summation identities with applications to the Fibonacci and Lucas numbers, in: G. E. Bergum, Applications of Fibonacci Numbers, Vol. 7, Bergum G. E. et al. (eds.), Kluwer Academic Publishers, 1998, pp. 197-200.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
- Solomon W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly, Vol. 70, No. 4 (1963), 403-405.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- Seppo Mustonen, On integer sequences with mutual k-residues, 2005.
- Seppo Mustonen, On integer sequences with mutual k-residues, 2005. [Local copy]
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
Programs
-
Mathematica
t = {1, 5}; Do[AppendTo[t, t[[-1]]^2 - 4*t[[-1]] + 4], {n, 11}] (* T. D. Noe, Jun 19 2012 *) Join[{1}, RecurrenceTable[{a[n] == a[n-1]^2 - 4*a[n-1] + 4, a[1] == 5}, a, {n, 1, 8}]] (* Jean-François Alcover, Feb 07 2016 *) Join[{1},NestList[#^2-4#+4&,5,10]] (* Harvey P. Dale, Dec 11 2023 *)
-
PARI
a(n)=if(n<2,max(0,1+4*n),a(n-1)^2-4*a(n-1)+4)
-
PARI
a(n)=if(n<1,n==0,n=2^n;fibonacci(n+1)+fibonacci(n-1)+2)
Formula
a(n) = L(2^n)+2, if n>0 where L() is Lucas sequence.
For n>=1, a(n) = 4 + Product_{i=0..n-1} a(i). - Vladimir Shevelev, Dec 08 2010
From Amiram Eldar, Sep 10 2022: (Start)
a(n) = Lucas(2^(n-1))^2 for n > 1.
Sum_{n>=1} 4^n/a(n) = 4 (Jennings, 1998; Duverney, 2001). (End)
Product_{n>=1} (1 - 3/a(n)) = 1/4 (Duverney and Kurosawa, 2022). - Amiram Eldar, Jan 07 2023
Comments