cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000058 Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.

Original entry on oeis.org

2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

Keywords

Comments

Also called Euclid numbers, because a(n) = a(0)*a(1)*...*a(n-1) + 1 for n>0, with a(0)=2. - Jonathan Sondow, Jan 26 2014
Another version of this sequence is given by A129871, which starts with 1, 2, 3, 7, 43, 1807, ... .
The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + ... .
Take a square. Divide it into 2 equal rectangles by drawing a horizontal line. Divide the upper rectangle into 2 squares. Now you can divide the lower one into another 2 squares, but instead of doing so draw a horizontal line below the first one so you obtain a (2+1 = 3) X 1 rectangle which can be divided in 3 squares. Now you have a 6 X 1 rectangle at the bottom. Instead of dividing it into 6 squares, draw another horizontal line so you obtain a (6+1 = 7) X 1 rectangle and a 42 X 1 rectangle left, etc. - Néstor Romeral Andrés, Oct 29 2001
More generally one may define f(1) = x_1, f(2) = x_2, ..., f(k) = x_k, f(n) = f(1)*...*f(n-1)+1 for n > k and natural numbers x_i (i = 1, ..., k) which satisfy gcd(x_i, x_j) = 1 for i <> j. By definition of the sequence we have that for each pair of numbers x, y from the sequence gcd(x, y) = 1. An interesting property of a(n) is that for n >= 2, 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) = (a(n)-2)/(a(n)-1). Thus we can also write a(n) = (1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 2 )/( 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), May 10 2001; [corrected by Michel Marcus, Mar 27 2019]
A greedy sequence: a(n+1) is the smallest integer > a(n) such that 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n+1) doesn't exceed 1. The sequence gives infinitely many ways of writing 1 as the sum of Egyptian fractions: Cut the sequence anywhere and decrement the last element. 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/3 + 1/7 + 1/42 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = ... . - Ulrich Schimke, Nov 17 2002; [corrected by Michel Marcus, Mar 27 2019]
Consider the mapping f(a/b) = (a^3 + b)/(a + b^3). Starting with a = 1, b = 2 and carrying out this mapping repeatedly on each new (reduced) rational number gives 1/2, 1/3, 4/28 = 1/7, 8/344 = 1/43, ..., i.e., 1/2, 1/3, 1/7, 1/43, 1/1807, ... . Sequence contains the denominators. Also the sum of the series converges to 1. - Amarnath Murthy, Mar 22 2003
a(1) = 2, then the smallest number == 1 (mod all previous terms). a(2n+6) == 443 (mod 1000) and a(2n+7) == 807 (mod 1000). - Amarnath Murthy, Sep 24 2003
An infinite coprime sequence defined by recursion.
Apart from the initial 2, a subsequence of A002061. It follows that no term is a square.
It appears that a(k)^2 + 1 divides a(k+1)^2 + 1. - David W. Wilson, May 30 2004. This is true since a(k+1)^2 + 1 = (a(k)^2 - a(k) + 1)^2 +1 = (a(k)^2-2*a(k)+2)*(a(k)^2 + 1) (a(k+1)=a(k)^2-a(k)+1 by definition). - Pab Ter (pabrlos(AT)yahoo.com), May 31 2004
In general, for any m > 0 coprime to a(0), the sequence a(n+1) = a(n)^2 - m*a(n) + m is infinite coprime (Mohanty). This sequence has (m,a(0))=(1,2); (2,3) is A000215; (1,4) is A082732; (3,4) is A000289; (4,5) is A000324.
Any prime factor of a(n) has -3 as its quadratic residue (Granville, exercise 1.2.3c in Pollack).
Note that values need not be prime, the first composites being 1807 = 13 * 139 and 10650056950807 = 547 * 19569939581. - Jonathan Vos Post, Aug 03 2008
If one takes any subset of the sequence comprising the reciprocals of the first n terms, with the condition that the first term is negated, then this subset has the property that the sum of its elements equals the product of its elements. Thus -1/2 = -1/2, -1/2 + 1/3 = -1/2 * 1/3, -1/2 + 1/3 + 1/7 = -1/2 * 1/3 * 1/7, -1/2 + 1/3 + 1/7 + 1/43 = -1/2 * 1/3 * 1/7 * 1/43, and so on. - Nick McClendon, May 14 2009
(a(n) + a(n+1)) divides a(n)*a(n+1)-1 because a(n)*a(n+1) - 1 = a(n)*(a(n)^2 - a(n) + 1) - 1 = a(n)^3 - a(n)^2 + a(n) - 1 = (a(n)^2 + 1)*(a(n) - 1) = (a(n) + a(n)^2 - a(n) + 1)*(a(n) - 1) = (a(n) + a(n+1))*(a(n) - 1). - Mohamed Bouhamida, Aug 29 2009
This sequence is also related to the short side (or hypotenuse) of adjacent right triangles, (3, 4, 5), (5, 12, 13), (13, 84, 85), ... by A053630(n) = 2*a(n) - 1. - Yuksel Yildirim, Jan 01 2013, edited by M. F. Hasler, May 19 2017
For n >= 4, a(n) mod 3000 alternates between 1807 and 2443. - Robert Israel, Jan 18 2015
The set of prime factors of a(n)'s is thin in the set of primes. Indeed, Odoni showed that the number of primes below x dividing some a(n) is O(x/(log x log log log x)). - Tomohiro Yamada, Jun 25 2018
Sylvester numbers when reduced modulo 864 form the 24-term arithmetic progression 7, 43, 79, 115, 151, 187, 223, 259, 295, 331, ..., 763, 799, 835 which repeats itself until infinity. This was first noticed in March 2018 and follows from the work of Sondow and MacMillan (2017) regarding primary pseudoperfect numbers which similarly form an arithmetic progression when reduced modulo 288. Giuga numbers also form a sequence resembling an arithmetic progression when reduced modulo 288. - Mehran Derakhshandeh, Apr 26 2019
Named after the English mathematician James Joseph Sylvester (1814-1897). - Amiram Eldar, Mar 09 2024
Guy askes if it is an irrationality sequence (see Guy, 1981). - Stefano Spezia, Oct 13 2024

Examples

			a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
  • Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005267, A000945, A000946, A005265, A005266, A075442, A007018, A014117, A054377, A002061, A118227, A126263, A007996 (primes dividing some term), A323605 (smallest prime divisors), A091335 (number of prime divisors), A129871 (a variant starting with 1).

Programs

  • Haskell
    a000058 0 = 2
    a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
    -- James Spahlinger, Oct 09 2012
    
  • Haskell
    a000058_list = iterate a002061 2  -- Reinhard Zumkeller, Dec 18 2013
    
  • Julia
    a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
    [a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
  • Maple
    A[0]:= 2:
    for n from 1 to 12 do
    A[n]:= A[n-1]^2 - A[n-1]+1
    od:
    seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
  • Mathematica
    a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
    NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
    RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
  • Maxima
    a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
    makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
    
  • PARI
    a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
    
  • PARI
    A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
    
  • PARI
    a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
    
  • Python
    A000058 = [2]
    for n in range(1, 10):
        A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = 1 + a(0)*a(1)*...*a(n-1).
a(n) = a(n-1)*(a(n-1)-1) + 1; Sum_{i>=0} 1/a(i) = 1. - Néstor Romeral Andrés, Oct 29 2001
Vardi showed that a(n) = floor(c^(2^(n+1)) + 1/2) where c = A076393 = 1.2640847353053011130795995... - Benoit Cloitre, Nov 06 2002 (But see the Aho-Sloane paper!)
a(n) = A007018(n+1)+1 = A007018(n+1)/A007018(n) [A007018 is a(n) = a(n-1)^2 + a(n-1), a(0)=1]. - Gerald McGarvey, Oct 11 2004
a(n) = sqrt(A174864(n+1)/A174864(n)). - Giovanni Teofilatto, Apr 02 2010
a(n) = A014117(n+1)+1 for n = 0,1,2,3,4; a(n) = A054377(n)+1 for n = 1,2,3,4. - Jonathan Sondow, Dec 07 2013
a(n) = f(1/(1-(1/a(0) + 1/a(1) + ... + 1/a(n-1)))) where f(x) is the smallest integer > x (see greedy algorithm above). - Robert FERREOL, Feb 22 2019
From Amiram Eldar, Oct 29 2020: (Start)
Sum_{n>=0} (-1)^n/(a(n)-1) = A118227.
Sum_{n>=0} (-1)^n/a(n) = 2 * A118227 - 1. (End)

A000435 Normalized total height of all nodes in all rooted trees with n labeled nodes.

Original entry on oeis.org

0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1

Views

Author

Keywords

Comments

This is the sequence that started it all: the first sequence in the database!
The height h(V) of a node V in a rooted tree is its distance from the root. a(n) = Sum_{all nodes V in all n^(n-1) rooted trees on n nodes} h(V)/n.
In the trees which have [0, n-1] = (0, 1, ..., n-1) as their ordered set of nodes, the number of nodes at distance i from node 0 is f(n,i) = (n-1)...(n-i)(i+1)n^(j-1), 0 <= i < n-1, i+j = n-1 (and f(n,n-1) = (n-1)!): (n-1)...(n-i) counts the words coding the paths of length i from any node to 0, n^(j-1) counts the Pruefer codes of the rest, words build by iterated deletion of the greater node of degree 1 ... except the last one, (i+1), necessary pointing at the path. If g(n,i) = (n-1)...(n-i)n^j, i+j = n-1, f(n,i) = g(n,i) - g(n,i+1), g(n,i) = Sum_{k>=i} f(n,k), the sequence is Sum_{i=1..n-1} g(n,i). - Claude Lenormand (claude.lenormand(AT)free.fr), Jan 26 2001
If one randomly selects one ball from an urn containing n different balls, with replacement, until exactly one ball has been selected twice, the probability that this ball was also the second ball to be selected once is a(n)/n^n. See also A001865. - Matthew Vandermast, Jun 15 2004
a(n) is the number of connected endofunctions with no fixed points. - Geoffrey Critzer, Dec 13 2011
a(n) is the number of weakly connected simple digraphs on n labeled nodes where every node has out-degree 1. A digraph where all out-degrees are 1 can be called a functional digraph due to the correspondence with endofunctions. - Andrew Howroyd, Feb 06 2024

Examples

			For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o   o
   |      \ /
   O       O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o        o   o
   |     |         \ /
   o     o   o      o     o o o
   |      \ /       |      \|/
   O       O        O       O
  (1)     (2)      (3)     (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001863, A001864, A001854, A002862 (unlabeled version), A234953, A259334.
Column k=1 of A350452.

Programs

  • Maple
    A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
    seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
    nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
  • PARI
    x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
    
  • PARI
    A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
    
  • Python
    from math import comb
    def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023

Formula

a(n) = (n-1)! * Sum_{k=0..n-2} n^k/k!.
a(n) = A001864(n)/n.
E.g.f.: LambertW(-x) - log(1+LambertW(-x)). - Vladeta Jovovic, Apr 10 2001
a(n) = A001865(n) - n^(n-1).
a(n) = A001865(n) - A000169(n). - Geoffrey Critzer, Dec 13 2011
a(n) ~ sqrt(Pi/2)*n^(n-1/2). - Vaclav Kotesovec, Aug 07 2013
a(n)/A001854(n) ~ 1/2 [See Renyi-Szekeres, (4.7)]. Also a(n) = Sum_{k=0..n-1} k*A259334(n,k). - David desJardins, Jan 20 2017
a(n) = (n-1)*A001863(n). - M. F. Hasler, Dec 10 2018

Extensions

Additional references from Valery A. Liskovets
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by M. F. Hasler, Dec 10 2018

A002084 Sinh(x) / cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.

Original entry on oeis.org

1, 4, 36, 624, 18256, 814144, 51475776, 4381112064, 482962852096, 66942218896384, 11394877025289216, 2336793875186479104, 568240131312188379136, 161669933656307658932224, 53204153193639888357113856, 20053432927718528320240287744
Offset: 0

Views

Author

Keywords

Comments

Gandhi proves that a(n) == 1 (mod 2n+1) if 2n+1 is prime, that a(2n+1) == 4 (mod 10), and that a(2n+2) == 6 (mod 10). - Charles R Greathouse IV, Oct 16 2012

Examples

			x + 2/3*x^3 + 3/10*x^5 + 13/105*x^7 + 163/3240*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002085.

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Sinh[x]/Cos[x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    a(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);sum(g=1,n,binomial(2*n-1,2*g-2)*v[g]) \\ Charles R Greathouse IV, Oct 16 2012
    
  • PARI
    list(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);vector(n,k,sum(g=1,k,binomial(2*k-1,2*g-2)*v[g])) \\ Charles R Greathouse IV, Oct 16 2012
  • Sage
    # Generalized algorithm of L. Seidel (1877)
    def A002084_list(n) :
        R = []; A = {-1:0, 0:0}
        k = 0; e = 1
        for i in range(2*n) :
            Am = 1 if e == -1 else 0
            A[k + e] = 0
            e = -e
            for j in (0..i) :
                Am += A[k]
                A[k] = Am
                k += e
            if e == 1 : R.append(A[i//2])
        return R
    A002084_list(10) # Peter Luschny, Jun 02 2012
    

Formula

E.g.f.: sinh(x)/cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
a(n) = Sum_{k=0..n} binomial(2n+1, 2k+1)*A000364(n-k) = Sum_{k=0..n} A103327(n, k)*A000324(n-k) = Sum_{k=0..n} (-1)^(n-k)*A104033(n, k). - Philippe Deléham, Aug 27 2005
a(n) ~ sinh(Pi/2) * 2^(2*n + 3) * (2*n + 1)! / Pi^(2*n+2). - Vaclav Kotesovec, Jul 05 2020

Extensions

a(13)-a(15) from Andrew Howroyd, Feb 05 2018

A145502 a(n+1) = a(n)^2+2*a(n)-2 and a(1)=2.

Original entry on oeis.org

2, 6, 46, 2206, 4870846, 23725150497406, 562882766124611619513723646, 316837008400094222150776738483768236006420971486980606
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Comments

General formula for a(n+1) = a(n)^2+2*a(n)-2 and a(1) = k+1 is a(n) = floor(((k + sqrt(k^2 + 4))/2)^(2^((n+1) - 1))).
From Peter Bala, Nov 12 2012: (Start)
The present sequence corresponds to the case x = 3 of the following general remarks. Sequences A145503 through A145510 correspond to the cases x = 4 through x = 11 respectively.
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(2^(n-1)) + (1/alpha)^(2^(n-1)) - 1. Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^2 + 2*a(n) - 2 with the initial condition a(1) = x - 1.
A second recurrence is a(n) = (a(1) + 2)*{Product_{k = 1..n-1} a(k)} - 2.
The following algebraic identity is valid for x > 2:
(x + 1)/sqrt(x^2 - 4) = (1 + 1/(x - 1))*(y + 1)/sqrt(y^2 - 4), where y - 1 = (x - 1)^2 + 2*(x - 1) - 2. Iterating the identity yields the product expansion (x + 1)/sqrt(x^2 - 4) = Product_{n >= 1} (1 + 1/a(n)).
A second expansion is Product_{n >= 1} (1 + 2/(a(n) + 1)) = sqrt((x + 2)/(x - 2)). For an alternative approach to these identities see the Bala link.
(End)

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 2; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
    (* or *)
    k = 1; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}]
    NestList[#^2+2#-2&,2,10] (* Harvey P. Dale, Dec 14 2021 *)

Formula

From Peter Bala, Nov 12 2012: (Start)
a(n) = phi^(2^n) + (1/phi)^(2^n) - 1, where phi := (1 + sqrt(5))/2 is the golden ratio.
a(n) = A001566(n-1) - 1.
Recurrence: a(n) = 4*(Product_{k = 1..n-1} a(k)) - 2 with a(1) = 2.
Product_{n >= 1} (1 + 1/a(n)) = 4/sqrt(5).
Product_{n >= 1} (1 + 2/(a(n) + 1)) = sqrt(5). (End)
From Amiram Eldar, Sep 10 2022: (Start)
a(n) = A000324(n) - 3.
Sum_{n>=1} (-2)^n/a(n) = -1/2 (Duverney, 2001). (End)
Product_{n>=1} (1 + 3/a(n)) = 4 (Duverney and Kurosawa, 2022). - Amiram Eldar, Jan 07 2023

A177888 P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 7, 1, 5, 7, 17, 43, 1, 6, 9, 31, 257, 1807, 1, 7, 11, 49, 871, 65537, 3263443, 1, 8, 13, 71, 2209, 756031, 4294967297, 10650056950807, 1, 9, 15, 97, 4691, 4870849, 571580604871, 18446744073709551617, 113423713055421844361000443, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 14 2010

Keywords

Examples

			Square array P_n(k) begins:
  1,              2,          3,      4,       5,    6,    7,     8, ...
  1,              3,          5,      7,       9,   11,   13,    15, ...
  1,              7,         17,     31,      49,   71,   97,   127, ...
  1,             43,        257,    871,    2209, 4691, 8833, 15247, ...
  1,           1807,      65537, 756031, 4870849,  ...
  1,        3263443, 4294967297,    ...
  1, 10650056950807,        ...
		

Crossrefs

Columns k=0-10 give: A000012, A000058(n+1), A000215, A000289(n+1), A000324(n+1), A001543(n+1), A001544(n+1), A067686, A110360(n+1), A110368(n+1), A110383(n+1).
Rows n=0-2 give: A000027(k+1), A005408, A056220(k+1).
Main diagonal gives A252730.
Coefficients of P_n(z) give: A177701.

Programs

  • Maple
    p:= proc(n) option remember;
          z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
        end:
    seq(seq(p(n)(d-n), n=0..d), d=0..8);
  • Mathematica
    p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)

A067686 a(n) = a(n-1) * a(n-1) - B * a(n-1) + B, a(0) = 1 + B for B = 7.

Original entry on oeis.org

8, 15, 127, 15247, 232364287, 53993160246468367, 2915261353400811631533974206368127, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0

Views

Author

Drastich Stanislav (drass(AT)spas.sk), Feb 05 2002

Keywords

Comments

This is the special case k=7 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

Crossrefs

Cf. B=1: A000058 (Sylvester's sequence), B=2: A000215 (Fermat numbers), B=3: A000289, B=4: A000324, B=5: A001543, B=6: A001544.
Column k=7 of A177888.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
    NestList[#^2-7#+7&,8,10] (* Harvey P. Dale, Jan 26 2025 *)

Formula

a(n) ~ c^(2^n), where c = 3.3333858371760195832345950846454963835549715770476958790043961891683146201... . - Vaclav Kotesovec, Dec 17 2014

A177701 Triangle of coefficients of polynomials P_n(z) defined by the recursion P_0(z) = z+1; for n>=1, P_n(z) = z + Product_{k=0..n-1} P_k(z).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 4, 14, 16, 8, 1, 16, 112, 324, 508, 474, 268, 88, 16, 1, 256, 3584, 22912, 88832, 233936, 443936, 628064, 675456, 557492, 353740, 171644, 62878, 17000, 3264, 416, 32, 1, 65536, 1835008, 24576000, 209715200, 1281482752, 5974786048, 22114709504, 66752724992
Offset: 1

Views

Author

Vladimir Shevelev, Dec 11 2010

Keywords

Comments

Length of the first row is 2; for i>=2, length of the i-th row is 2^{i-2}+1.

Examples

			Triangle begins:
   1,   1;
   2,   1;
   2,   4,   1;
   4,  14,  16,   8,   1;
  16, 112, 324, 508, 474, 268, 88, 16, 1;
  ...
		

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember;
           z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
        end:
    deg:= n-> `if`(n=0, 1, 2^(n-1)):
    T:= (n,k)-> coeff(p(n)(z), z, deg(n)-k):
    seq(seq(T(n,k), k=0..deg(n)), n=0..6); # Alois P. Heinz, Dec 13 2010
  • Mathematica
    P[0][z_] := z + 1;
    P[n_][z_] := P[n][z] = z + Product[P[k][z], {k, 0, n-1}];
    row[n_] := CoefficientList[P[n][z], z] // Reverse;
    Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)

Formula

Another recursion is: P_n(z)=z+P_(n-1)(z)(P_(n-1)(z)-z).
Private values: P_n(0)=1; P_n(-1)=delta_(n,0)-1; {P_n(1)}=A000058; {P_n(2)}=A000215; {P_n(3)}={A000289(n+1)}; {P_n(4)}={A000324(n+1)}; {P_n(5)}={A001543(n+1)}; {P_n(6)}={A001544(n+1)}; {P_n(7)}={A067686(n)}; {P_n(8)}={A110360(n)}; {P_0(n)}={A000027(n+1)}; {P_1(n)}={A005408(n)}; {P_2(n)}={A056220(n+1)}.

Extensions

More terms from Alois P. Heinz, Dec 13 2010

A275698 a(0) = 2, after that a(n) is 3 plus the least common multiple of previous terms.

Original entry on oeis.org

2, 5, 13, 133, 17293, 298995973, 89398590973228813, 7992108067998667938125889533702533, 63873791370569400659097694858350356285036046451665934814399129508493
Offset: 0

Views

Author

Andres Cicuttin, Aug 05 2016

Keywords

Comments

This sequence could be considered a particular case of a possible two-parameter family of sequences of the form: a(n) = k1 + lcm(a(0),a(1),..,a(n-1)), a(0) = k2, where in this case k1=3 and k2=2. With other choices of k1 and k2 it seems it is possible to generate other sequences such as
A129871 with k1 = 1 and k2 = 1,
A000058 with k1 = 1 and k2 = 2,
A082732 with k1 = 1 and k2 = 3,
A000215 with k1 = 2 and k2 = 3,
A000324 with k1 = 4 and k2 = 1,
A001543 with k1 = 5 and k2 = 1,
A001544 with k1 = 6 and k2 = 1,
A275664 with k1 = 2 and k2 = 2,
A000289 with k1 = 3 and k2 = 1.

Crossrefs

Programs

Formula

a(n) = 3 + lcm(a(0), a(1), ..., a(n - 1)), a(0) = 2.
a(n) = 3 + a(n-1)*(a(n-1)-3), for n > 1. - Christian Krause, Oct 17 2023. Proof: Follows from associativity of lcm(...) and the fact that gcd(m,m+3)=1:
a(n)-3 = lcm(a(0),a(1),...,a(n-2),a(n-1))
= lcm(lcm(a(0),a(1),...,a(n-2)),a(n-1))
= lcm(a(n-1)-3,a(n-1))
= (a(n-1)-3)*a(n-1).
Showing 1-8 of 8 results.