A000058
Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.
Original entry on oeis.org
2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0
a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
- Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
- Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
- Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
- Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..12
- David Adjiashvili, Sandro Bosio and Robert Weismantel, Dynamic Combinatorial Optimization: a complexity and approximability study, 2012.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
- Gennady Bachman and Troy Kessler, On divisibility properties of certain multinomial coefficients—II, Journal of Number Theory, Volume 106, Issue 1, May 2004, Pages 1-12.
- Andreas Bäuerle, Sharp volume and multiplicity bounds for Fano simplices, arXiv:2308.12719 [math.CO], 2023.
- Kevin S. Brown, Odd, Greedy and Stubborn (Unit Fractions).
- Eunice Y. S. Chan and Robert M. Corless, Minimal Height Companion Matrices for Euclid Polynomials, Mathematics in Computer Science, Vol. 13, No. 1-2 (2019), pp. 41-56, arXiv preprint, arXiv:1712.04405 [math.NA], 2017.
- Hung Viet Chu, A Threshold for the Best Two-term Underapproximation by the Greedy Algorithm, arXiv:2306.12564 [math.NT], 2023.
- Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
- D. R. Curtiss, On Kellogg's Diophantine problem, Amer. Math. Monthly, Vol. 29, No. 10 (1922), pp. 380-387.
- Mehran Derakhshandeh, Why do Sylvester numbers, when reduced modulo 864, form an arithmetic progression 7,43,79,115,151,187,223,...?
- Paul Erdős and E. G. Straus, On the Irrationality of Certain Ahmes Series, J. Indian Math. Soc. (N.S.), 27(1964), pp. 129-133.
- Steven Finch, Exercises in Iterational Asymptotics, arXiv:2411.16062 [math.NT], 2024. See p. 10.
- Solomon W. Golomb, On the sum of the reciprocals of the Fermat numbers and related irrationalities, Canad. J. Math., 15 (1963), 475-478.
- Solomon W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
- Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
- János Kollár, Which powers of holomorphic functions are integrable?, arXiv:0805.0756 [math.AG], 2008.
- E. Lemoine, Sur la décomposition d'un nombre en ses carrés maxima, Assoc. Française pour L'Avancement des Sciences (1896), 73-77.
- Zheng Li and Quanyu Tang, On a conjecture of Erdős and Graham about the Sylvester's sequence, arXiv:2503.12277 [math.NT], 2025. See p. 2.
- Nick Lord, A uniform construction of some infinite coprime sequences, The Mathematical Gazette, vol. 92, no. 523, March 2008, pp.66-70.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - _N. J. A. Sloane_, Jun 13 2012
- Melvyn B. Nathanson, Underapproximation by Egyptian fractions, arXiv:2202.00191 [math.NT], 2022.
- Benjamin Nill, Volume and lattice points of reflexive simplices, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320, arXiv preprint, arXiv:math/0412480 [math.AG], 2004-2007.
- R. W. K. Odoni, On the prime divisors of the sequence w_{n+1}=1+w_1 ... w_n, J. London Math. Soc. 32 (1985), 1-11.
- Michael Penn, An intriguing integer sequence — Sylvester’s Sequence, YouTube video (2022).
- Simon Plouffe, A set of formulas for primes, arXiv:1901.01849 [math.NT], 2019.
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 5. [?Broken link]
- Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 5.
- Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Vol. 113, No. 10 (Dec., 2006), pp. 937-938.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdős-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240, arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018.
- J. J. Sylvester, On a Point in the Theory of Vulgar Fractions, Amer. J. Math., Vol. 3, No. 4 (1880), pp. 332-335.
- Burt Totaro, The ACC conjecture for log canonical thresholds, Séminaire Bourbaki no. 1025 (juin 2010).
- Burt Totaro and Chengxi Wang, Varieties of general type with small volume, arXiv:2104.12200 [math.AG], 2021.
- Akiyoshi Tsuchiya, The delta-vectors of reflexive polytopes and of the dual polytopes, Discrete Mathematics, Vol. 339, No. 10 (2016), pp. 2450-2456, arXiv preprint, arXiv:1411.2122 [math.CO], 2014-2016.
- Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
- Eric Weisstein's World of Mathematics, Sylvester's Sequence.
- Wikipedia, Sylvester's sequence.
- Bowen Yao, A note on fraction decompositions of integers, The American Mathematical Monthly, 127(10), 928-932, Dec 2020.
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
- Index entries for "core" sequences.
Cf.
A005267,
A000945,
A000946,
A005265,
A005266,
A075442,
A007018,
A014117,
A054377,
A002061,
A118227,
A126263,
A007996 (primes dividing some term),
A323605 (smallest prime divisors),
A091335 (number of prime divisors),
A129871 (a variant starting with 1).
-
a000058 0 = 2
a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
-- James Spahlinger, Oct 09 2012
-
a000058_list = iterate a002061 2 -- Reinhard Zumkeller, Dec 18 2013
-
a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
[a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
-
A[0]:= 2:
for n from 1 to 12 do
A[n]:= A[n-1]^2 - A[n-1]+1
od:
seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
-
a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
-
a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
-
a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
-
A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
-
a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
-
A000058 = [2]
for n in range(1, 10):
A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
# Chai Wah Wu, Aug 20 2014
A000435
Normalized total height of all nodes in all rooted trees with n labeled nodes.
Original entry on oeis.org
0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1
For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
o
|
o o o
| \ /
O O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
o
|
o o o o
| | \ /
o o o o o o o
| \ / | \|/
O O O O
(1) (2) (3) (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)
- Vijayakumar Ambat, Article in the Malayalam newspaper Ayala Manorama - Padhippura, 12 June 2015, that mentions the OEIS, and in particular this sequence.
- V. I. Arnold, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with the same number of edges and vertices, Functional Anal. Appl., 30 (1996), 1-17.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, arXiv:1607.05776 [math.CO], 2016.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, Version on DZ's home page with more links; Local copy, pdf file only, no active links
- I. P. Goulden and D. M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, arXiv:math/9902009 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, arXiv:math/9902125 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera Ann. Comb. 4 (2000), no. 1, 27-46. (See Theorem 1.1.)
- Brady Haran, The Number Collector (with Neil Sloane), Numberphile Podcast (2019)
- Andrew Lohr and Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32.
- T. Kyle Petersen, Exponential generating functions and Bell numbers, Inquiry-Based Enumerative Combinatorics (2019) Chapter 7, Undergraduate Texts in Mathematics, Springer, Cham, 98-99.
- A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- Marko Riedel et al., Connected endofunctions with no fixed points, Mathematics Stack Exchange, Dec 2014.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Page from 1964 notebook showing start of OEIS [includes A000027, A000217, A000292, A000332, A000389, A000579, A000110, A007318, A000058, A000215, A000289, A000324, A234953 (= A001854(n)/n), A000435, A000169, A000142, A000272, A000312, A000111]
- N. J. A. Sloane, Cover of same notebook
- N. J. A. Sloane, Lengths of Cycle Times in Random Neural Networks, Ph. D. Dissertation, Cornell University, February 1967; also Report No. 10, Cognitive Systems Research Program, Cornell University, 1967. This sequence appears on page 119.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Illustration of a(3) and a(4)
- Yukun Yao and Doron Zeilberger, An Experimental Mathematics Approach to the Area Statistic of Parking Functions, arXiv:1806.02680 [math.CO], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
-
x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
-
A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
-
from math import comb
def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023
A002084
Sinh(x) / cos(x) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!.
Original entry on oeis.org
1, 4, 36, 624, 18256, 814144, 51475776, 4381112064, 482962852096, 66942218896384, 11394877025289216, 2336793875186479104, 568240131312188379136, 161669933656307658932224, 53204153193639888357113856, 20053432927718528320240287744
Offset: 0
x + 2/3*x^3 + 3/10*x^5 + 13/105*x^7 + 163/3240*x^9 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
With[{nn=30},Take[CoefficientList[Series[Sinh[x]/Cos[x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Jul 17 2012 *)
-
a(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);sum(g=1,n,binomial(2*n-1,2*g-2)*v[g]) \\ Charles R Greathouse IV, Oct 16 2012
-
list(n)=n++;my(v=Vec(1/cos(x+O(x^(2*n+1)))));v=vector(n,i,v[2*i-1]*(2*i-2)!);vector(n,k,sum(g=1,k,binomial(2*k-1,2*g-2)*v[g])) \\ Charles R Greathouse IV, Oct 16 2012
-
# Generalized algorithm of L. Seidel (1877)
def A002084_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(2*n) :
Am = 1 if e == -1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
if e == 1 : R.append(A[i//2])
return R
A002084_list(10) # Peter Luschny, Jun 02 2012
A145502
a(n+1) = a(n)^2+2*a(n)-2 and a(1)=2.
Original entry on oeis.org
2, 6, 46, 2206, 4870846, 23725150497406, 562882766124611619513723646, 316837008400094222150776738483768236006420971486980606
Offset: 1
- Peter Bala, Notes on A145502-A145510.
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
-
aa = {}; k = 2; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
(* or *)
k = 1; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}]
NestList[#^2+2#-2&,2,10] (* Harvey P. Dale, Dec 14 2021 *)
A177888
P_n(k) with P_0(z) = z+1 and P_n(z) = z + P_(n-1)(z)*(P_(n-1)(z)-z) for n>1; square array P_n(k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 5, 7, 1, 5, 7, 17, 43, 1, 6, 9, 31, 257, 1807, 1, 7, 11, 49, 871, 65537, 3263443, 1, 8, 13, 71, 2209, 756031, 4294967297, 10650056950807, 1, 9, 15, 97, 4691, 4870849, 571580604871, 18446744073709551617, 113423713055421844361000443, 1
Offset: 0
Square array P_n(k) begins:
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 5, 7, 9, 11, 13, 15, ...
1, 7, 17, 31, 49, 71, 97, 127, ...
1, 43, 257, 871, 2209, 4691, 8833, 15247, ...
1, 1807, 65537, 756031, 4870849, ...
1, 3263443, 4294967297, ...
1, 10650056950807, ...
- Alois P. Heinz, Antidiagonals n = 0..13, flattened
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Columns k=0-10 give:
A000012,
A000058(n+1),
A000215,
A000289(n+1),
A000324(n+1),
A001543(n+1),
A001544(n+1),
A067686,
A110360(n+1),
A110368(n+1),
A110383(n+1).
Coefficients of P_n(z) give:
A177701.
-
p:= proc(n) option remember;
z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
end:
seq(seq(p(n)(d-n), n=0..d), d=0..8);
-
p[n_] := p[n] = Function[z, z + If [n == 0, 1, p[n-1][z]*(p[n-1][z]-z)] ]; Table [Table[p[n][d-n], {n, 0, d}], {d, 0, 8}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
A067686
a(n) = a(n-1) * a(n-1) - B * a(n-1) + B, a(0) = 1 + B for B = 7.
Original entry on oeis.org
8, 15, 127, 15247, 232364287, 53993160246468367, 2915261353400811631533974206368127, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0
Drastich Stanislav (drass(AT)spas.sk), Feb 05 2002
- Alois P. Heinz, Table of n, a(n) for n = 0..10
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Stanislav Drastich, Rapid growth sequences, arXiv:math/0202010 [math.GM], 2002.
- S. W. Golomb, On certain nonlinear recurring sequences, Amer. Math. Monthly 70 (1963), 403-405.
- S. Mustonen, On integer sequences with mutual k-residues
- Seppo Mustonen, On integer sequences with mutual k-residues [Local copy]
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
-
RecurrenceTable[{a[0]==8, a[n]==a[n-1]*(a[n-1]-7)+7}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
NestList[#^2-7#+7&,8,10] (* Harvey P. Dale, Jan 26 2025 *)
A177701
Triangle of coefficients of polynomials P_n(z) defined by the recursion P_0(z) = z+1; for n>=1, P_n(z) = z + Product_{k=0..n-1} P_k(z).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 4, 14, 16, 8, 1, 16, 112, 324, 508, 474, 268, 88, 16, 1, 256, 3584, 22912, 88832, 233936, 443936, 628064, 675456, 557492, 353740, 171644, 62878, 17000, 3264, 416, 32, 1, 65536, 1835008, 24576000, 209715200, 1281482752, 5974786048, 22114709504, 66752724992
Offset: 1
Triangle begins:
1, 1;
2, 1;
2, 4, 1;
4, 14, 16, 8, 1;
16, 112, 324, 508, 474, 268, 88, 16, 1;
...
- Alois P. Heinz, Table of n, a(n) for n = 1..1035
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Cf.
A000058,
A000215,
A000289,
A000324,
A001543,
A001544,
A067686,
A110360,
A000027,
A005408,
A056220,
A177888.
-
p:= proc(n) option remember;
z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
end:
deg:= n-> `if`(n=0, 1, 2^(n-1)):
T:= (n,k)-> coeff(p(n)(z), z, deg(n)-k):
seq(seq(T(n,k), k=0..deg(n)), n=0..6); # Alois P. Heinz, Dec 13 2010
-
P[0][z_] := z + 1;
P[n_][z_] := P[n][z] = z + Product[P[k][z], {k, 0, n-1}];
row[n_] := CoefficientList[P[n][z], z] // Reverse;
Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Jun 11 2018 *)
A275698
a(0) = 2, after that a(n) is 3 plus the least common multiple of previous terms.
Original entry on oeis.org
2, 5, 13, 133, 17293, 298995973, 89398590973228813, 7992108067998667938125889533702533, 63873791370569400659097694858350356285036046451665934814399129508493
Offset: 0
Showing 1-8 of 8 results.
Comments