A000350 Numbers m such that Fibonacci(m) ends with m.
0, 1, 5, 25, 29, 41, 49, 61, 65, 85, 89, 101, 125, 145, 149, 245, 265, 365, 385, 485, 505, 601, 605, 625, 649, 701, 725, 745, 749, 845, 865, 965, 985, 1105, 1205, 1249, 1345, 1445, 1585, 1685, 1825, 1925, 2065, 2165, 2305, 2405, 2501, 2545, 2645, 2785, 2885
Offset: 1
Examples
Fibonacci(25) = 75025 ends with 25.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1034 (terms n = 1..803 from T. D. Noe)
- G. R. Deily, Terminal Digit Coincidences Between Fibonacci Numbers and Their Indices, The Fibonacci Quarterly, 4.2 (1966) 151.
- M. Dunton and R. E. Grimm, Fibonacci on Egyptian fractions, Fib. Quart., 4 (1966), 339-354.
- D. A. Lind, Extended Computations of Terminal Digit Coincidences, Fibonacci Quarterly, 5.2 April 1967 pp. 183-184.
Programs
-
Haskell
import Data.List (isSuffixOf, elemIndices) import Data.Function (on) a000350 n = a000350_list !! (n-1) a000350_list = elemIndices True $ zipWith (isSuffixOf `on` show) [0..] a000045_list -- Reinhard Zumkeller, Apr 10 2012
-
Mathematica
a=0;b=1;c=1;lst={}; Do[a=b;b=c;c=a+b;m=Floor[N[Log[10,n]]]+1; If[Mod[c,10^m]==n,AppendTo[lst,n]],{n,3,5000}]; Join[{0,1},lst] (* edited and changed by Harvey P. Dale, Sep 10 2011 *) fnQ[n_]:=Mod[Fibonacci[n],10^IntegerLength[n]]==n; Select[Range[ 0,2900],fnQ] (* Harvey P. Dale, Nov 03 2012 *)
-
PARI
for(n=0,1e4,if(((Mod([1,1;1,0],10^#Str(n)))^n)[1,2]==n,print1(n", "))) \\ Charles R Greathouse IV, Apr 10 2012
-
Python
from sympy import fibonacci [i for i in range(1000) if str(fibonacci(i))[-len(str(i)):]==str(i)] # Nicholas Stefan Georgescu, Feb 27 2023
Comments