cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000350 Numbers m such that Fibonacci(m) ends with m.

Original entry on oeis.org

0, 1, 5, 25, 29, 41, 49, 61, 65, 85, 89, 101, 125, 145, 149, 245, 265, 365, 385, 485, 505, 601, 605, 625, 649, 701, 725, 745, 749, 845, 865, 965, 985, 1105, 1205, 1249, 1345, 1445, 1585, 1685, 1825, 1925, 2065, 2165, 2305, 2405, 2501, 2545, 2645, 2785, 2885
Offset: 1

Views

Author

Keywords

Comments

Conjecture: Other than 1 and 5, there is no m such that Fibonacci(m) in binary ends with m in binary. The conjecture holds up to m=50000. - Ralf Stephan, Aug 21 2006
The conjecture for binary numbers holds for m < 2^25. - T. D. Noe, May 14 2007
Conjecture is true. It is easy to prove (by induction on k) that if Fibonacci(m) ends with m in binary, then m == 0, 1, or 5 (mod 3*2^k) for any positive integer k, i.e., m must simply be equal to 0, 1, or 5. - Max Alekseyev, Jul 03 2009

Examples

			Fibonacci(25) = 75025 ends with 25.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (isSuffixOf, elemIndices)
    import Data.Function (on)
    a000350 n = a000350_list !! (n-1)
    a000350_list = elemIndices True $
                   zipWith (isSuffixOf `on` show) [0..] a000045_list
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Mathematica
    a=0;b=1;c=1;lst={}; Do[a=b;b=c;c=a+b;m=Floor[N[Log[10,n]]]+1; If[Mod[c,10^m]==n,AppendTo[lst,n]],{n,3,5000}]; Join[{0,1},lst] (* edited and changed by Harvey P. Dale, Sep 10 2011 *)
    fnQ[n_]:=Mod[Fibonacci[n],10^IntegerLength[n]]==n; Select[Range[ 0,2900],fnQ] (* Harvey P. Dale, Nov 03 2012 *)
  • PARI
    for(n=0,1e4,if(((Mod([1,1;1,0],10^#Str(n)))^n)[1,2]==n,print1(n", "))) \\ Charles R Greathouse IV, Apr 10 2012
    
  • Python
    from sympy import fibonacci
    [i for i in range(1000) if str(fibonacci(i))[-len(str(i)):]==str(i)] # Nicholas Stefan Georgescu, Feb 27 2023