cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023172 Self-Fibonacci numbers: numbers k that divide Fibonacci(k).

Original entry on oeis.org

1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
Offset: 1

Views

Author

Keywords

Comments

Sequence contains all powers of 5, infinitely many multiples of 12 and other numbers (including some factors of Fibonacci(5^j), e.g., 75025).
If m is in this sequence then 5*m is (since 5*m divides 5*F(m) which in turn divides F(5*m)). Also, if m is in this sequence then F(m) is in this sequence (since if gcd(F(m),m)=m then gcd(F(F(m)),F(m)) = F(gcd(F(m),m)) = F(m)). - Max Alekseyev, Sep 20 2009
From Max Alekseyev, Nov 29 2010: (Start)
Every term greater than 1 is a multiple of 5 or 12.
Proof. Let n>1 divide Fibonacci number F(n) and let p be the smallest prime divisor of n.
If p=2, then 3|n implying further that 4|n. Hence, 12|n.
If p=5, then 5|n.
If p is different from 2 and 5, then p divides either F(p+1) or F(p-1) and thus p divides either F(gcd(n,p+1)) or F(gcd(n,p-1)). Minimality of p implies that gcd(n,p-1)=1 and gcd(n,p+1)=1 (notice that p+1 being prime implies p=2 which is not the case). Therefore, p divides F(1)=1, a contradiction to the existence of such p. (End)
Luca & Tron give an upper bound, see links. - Charles R Greathouse IV, Aug 04 2021

References

  • S. Wolfram, "A new kind of science", p. 891

Crossrefs

Cf. A000350. See A127787 for an essentially identical sequence.
Cf. A128974 (12n does not divide Fibonacci(12n)). - Zak Seidov, Jan 10 2016

Programs

  • Haskell
    import Data.List (elemIndices)
    a023172 n = a023172_list !! (n-1)
    a023172_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod (tail a000045_list) [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Magma
    [n: n in [1..2*10^3] | Fibonacci(n) mod n eq 0 ]; // Vincenzo Librandi, Sep 17 2015
  • Maple
    fmod:= proc(n,m) local M,t; uses LinearAlgebra:-Modular;
        if m <= 1 then return 0 fi;
        if m < 2^25 then t:= float[8] else t:= integer fi;
        M:= Mod(m,<<1,1>|<1,0>>,t);
        round(MatrixPower(m,M,n)[1,2])
    end proc:
    select(n -> fmod(n,n)=0, [$1..2000]); # Robert Israel, May 10 2016
  • Mathematica
    a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[c, n]==0, Print[n]], {n, 3, 1500}]
    Select[Range[1350], Mod[Fibonacci[ # ], # ]==0&] (* Harvey P. Dale *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,2]==0 \\ Charles R Greathouse IV, Feb 03 2014
    

Extensions

Edited by Don Reble, Sep 07 2003

A038546 Numbers n such that n-th Fibonacci number has initial digits n.

Original entry on oeis.org

0, 1, 5, 43, 48, 53, 3301, 48515, 348422, 406665, 1200207, 6698641, 190821326, 2292141445, 257125021372, 5843866639660, 45173327533483, 46312809996150, 59358981837795, 129408997210988, 1450344802530203, 5710154240910003
Offset: 1

Views

Author

Keywords

Comments

The Mathematica coding used by Robert G. Wilson v implements Binet's Fibonacci number formula as suggested by David W. Wilson and incorporates Benoit Cloitre's use of logarithms to achieve a further increase in speed.
Fixed points of A020344. - Alois P. Heinz, Jul 08 2022

Examples

			a(3)=43 since 43rd Fibonacci number starts with 43 -> {43}3494437.
Fibonacci(53) is 53316291173, which begins with 53, so 53 is a term in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a = N[ Log[10, Sqrt[5]/5], 24]; b = N [Log[10, GoldenRatio], 24]; Do[ If[ IntegerPart[10^FractionalPart[a + n*b]*10^Floor[ Log[10, n]]] == n, Print[n]], {n, 225000000}] (* Robert G. Wilson v, May 09 2005 *)
    (* confirmed with: *) fQ[n_] := (FromDigits[ Take[ IntegerDigits[ Fibonacci[n]], Floor[ Log[10, n] + 1]]] == n)
  • PARI
    /* To obtain terms > 5: */ a=(1+sqrt(5))/2; b=1/sqrt(5); for(n=1,3500, if(n==floor(b*(a^n)/10^( floor(log(b *(a^n))/log(10))-floor(log(n)/log(10)))),print1(n,","))) \\ Benoit Cloitre, Feb 27 2002

Formula

n>5 is in the sequence if a=(1+sqrt(5))/2 b=1/sqrt(5) and n==floor(b*(a^n)/10^(floor((log(b) +n*log(a))/log(10))-floor(log(n)/log(10))) ). - Benoit Cloitre, Feb 27 2002

Extensions

Term a(6) from Patrick De Geest, Oct 15 1999
a(7) from Benoit Cloitre, Feb 27 2002
a(8)-a(11) from Robert G. Wilson v, May 09 2005
a(12) from Robert G. Wilson v, May 11 2005
More terms from Robert Gerbicz, Aug 22 2006

A050816 Fibonacci(k) ending with digits of its index number k.

Original entry on oeis.org

0, 1, 5, 75025, 514229, 165580141, 7778742049, 2504730781961, 17167680177565, 259695496911122585, 1779979416004714189, 573147844013817084101, 59425114757512643212875125, 898923707008479989274290850145
Offset: 0

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Module[{idni=IntegerDigits[First[n]],indf=IntegerDigits[Last[n]]}, idni== Take[indf,-Length[idni]]]; Transpose[Select[Table[ {n, Fibonacci[n]}, {n,0,150}],fQ]][[2]] (* Harvey P. Dale, Apr 21 2011 *)

A052000 Fibonacci(k) starting with digits of its index number k.

Original entry on oeis.org

0, 1, 5, 433494437, 4807526976, 53316291173
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

Next term '3301...7801' has 690 digits.

Crossrefs

Formula

a(n) = A000045(A038546(n))

Extensions

Offset changed to 1 by Jon E. Schoenfield, Oct 17 2019

A093537 Number of n-digit Fibomorphic numbers, i.e., numbers m such that Fibonacci(m) ends in m.

Original entry on oeis.org

3, 8, 22, 82, 228, 229, 231, 231, 230, 231, 232, 231, 230
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2004

Keywords

Comments

The sequence of k such that Fibonacci(k) mod 10^n = k mod 10^n has for n=1..10 the periods: 14, 31, 71, 271, 771, 771, 771, 771, 771, 771. This may help explain why the A093537 terms are almost constant for n>=5. [Lars Blomberg, Oct 02 2011]

Examples

			For n=1, there are 3 such 1-digit Fibonacci numbers: 0, 1 and 5.
		

Crossrefs

Cf. A000350.

Extensions

4 more terms from David Wasserman, Oct 26 2006
Offset changed to 1 and a(8)-a(13) added by Lars Blomberg, Oct 02 2011

A132365 Least number k such that the Lucas number A000032(k) contains n.

Original entry on oeis.org

1, 0, 2, 3, 13, 9, 4, 6, 7, 24, 5, 10, 15, 26, 20, 25, 49, 6, 11, 16, 13, 12, 10, 21, 45, 40, 20, 36, 7, 31, 50, 12, 35, 19, 17, 15, 41, 36, 22, 23, 39, 39, 14, 21, 41, 60, 8, 32, 19, 56, 20, 13, 45, 37, 51, 44, 17, 56, 42, 22, 25, 62, 35, 15, 71, 47, 25, 24, 43, 32, 17, 45, 49, 38
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2007

Keywords

Comments

Values such that a(n)=n (fixed points) are 1, 62. I don't know if there are any other fixed points. The first time a(n)=a(n+1) occurs because L(39)=141422324 which includes both 41 and 42 (and later on in the sequence, because it contains 141 and 142). [Sean A. Irvine, Nov 30 2009]

Crossrefs

Programs

  • Python
    def A132365(n):
        a, b, m, s = 2, 1, 0, str(n)
        while True:
            if s in str(a):
                return m
            m += 1
            a, b = b, a+b # Chai Wah Wu, Jun 06 2017

Formula

a(n) = Min{k such that A000032(k) contains the decimal digit substring which represents the integer n}.

Extensions

Incorrect comment removed by Sean A. Irvine, Nov 30 2009
Corrected and extended by Sean A. Irvine, Nov 30 2009
Showing 1-6 of 6 results.