A067927 Duplicate of A038546.
0, 1, 5, 43, 48, 53, 3301, 48515
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nn = 100; t = tn = Table[0, {nn}]; found = 0; n = 0; While[found < nn, n++; f = Fibonacci[n]; d = IntegerDigits[f]; i = 1; While[i <= Length[d], k = FromDigits[Take[d, i]]; If[k > nn, Break[]]; If[t[[k]] == 0, t[[k]] = f; tn[[k]] = n; found++]; i++]]; tn = Join[{0}, tn] (* T. D. Noe, Apr 02 2014 *)
def aupton(nn): ans, f, g, k = dict(), 0, 1, 0 while len(ans) < nn+1: sf = str(f) for i in range(1, len(sf)+1): if int(sf[:i]) > nn: break if sf[:i] not in ans: ans[sf[:i]] = k f, g, k = g, f+g, k+1 return [int(ans[str(i)]) for i in range(nn+1)] print(aupton(70)) # Michael S. Branicky, Jul 08 2022
Fibonacci(25) = 75025 ends with 25.
import Data.List (isSuffixOf, elemIndices) import Data.Function (on) a000350 n = a000350_list !! (n-1) a000350_list = elemIndices True $ zipWith (isSuffixOf `on` show) [0..] a000045_list -- Reinhard Zumkeller, Apr 10 2012
a=0;b=1;c=1;lst={}; Do[a=b;b=c;c=a+b;m=Floor[N[Log[10,n]]]+1; If[Mod[c,10^m]==n,AppendTo[lst,n]],{n,3,5000}]; Join[{0,1},lst] (* edited and changed by Harvey P. Dale, Sep 10 2011 *) fnQ[n_]:=Mod[Fibonacci[n],10^IntegerLength[n]]==n; Select[Range[ 0,2900],fnQ] (* Harvey P. Dale, Nov 03 2012 *)
for(n=0,1e4,if(((Mod([1,1;1,0],10^#Str(n)))^n)[1,2]==n,print1(n", "))) \\ Charles R Greathouse IV, Apr 10 2012
from sympy import fibonacci [i for i in range(1000) if str(fibonacci(i))[-len(str(i)):]==str(i)] # Nicholas Stefan Georgescu, Feb 27 2023
Let b(n) = Fibonacci(a(n)) (a(n)): 0, 1, 5, 43, 3, 4, 9, 44, 37, 2, ... (b(n)): 0, 1, 5, 433494437, 2, ...
from sympy import fibonacci from itertools import count a, sa, sb = [0,1,5,43], "01543", "015433494437" for _ in range(30): a.append(next(n for k in count(1) if not (n := int(sb[len(sa):len(sa)+k])) in a and not (len(sb) > len(sa) + k and sb[len(sa) + k] == "0"))) sa += str(a[-1]); sb += str(fibonacci(a[-1])) print(a)
fQ[n_]:=Module[{idni=IntegerDigits[First[n]],indf=IntegerDigits[Last[n]]}, idni== Take[indf,-Length[idni]]]; Transpose[Select[Table[ {n, Fibonacci[n]}, {n,0,150}],fQ]][[2]] (* Harvey P. Dale, Apr 21 2011 *)
from sympy import fibonacci from itertools import count a, b, sa, sb = [0,1,5,43], [0,1,5,433494437], "01543", "015433494437" for _ in range(10): a.append(next(n for k in count(1) if not (n := int(sb[len(sa):len(sa)+k])) in a and not (len(sb) > len(sa) + k and sb[len(sa) + k] == "0"))) b.append(fibonacci(a[-1])) sa += str(a[-1]); sb += str(b[-1]) print(b)
3^(Prime[Range[20]]-1) (* Harvey P. Dale, Mar 19 2013 *)
def A132365(n): a, b, m, s = 2, 1, 0, str(n) while True: if s in str(a): return m m += 1 a, b = b, a+b # Chai Wah Wu, Jun 06 2017
Comments