A000399 Unsigned Stirling numbers of first kind s(n,3).
1, 6, 35, 225, 1624, 13132, 118124, 1172700, 12753576, 150917976, 1931559552, 26596717056, 392156797824, 6165817614720, 102992244837120, 1821602444624640, 34012249593822720, 668609730341153280, 13803759753640704000
Offset: 3
Examples
(-log(1-x))^3 = x^3 + 3/2*x^4 + 7/4*x^5 + 15/8*x^6 + ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- Shanzhen Gao, Permutations with Restricted Structure (in preparation). - Shanzhen Gao, Sep 14 2010
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe and Robert Israel, Table of n, a(n) for n = 3..412 (3..100 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 32.
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv:1201.1323 [math.CO], 2012.
- Sergey Kitaev and Jeffrey Remmel, Quadrant Marked Mesh Patterns, J. Int. Seq. 15 (2012), #12.4.7.
Programs
-
Magma
A000399:=func< n | Abs(StirlingFirst(n, 3)) >; [ A000399(n): n in [3..25] ]; // Klaus Brockhaus, Jan 14 2011
-
Maple
seq(abs(Stirling1(n,3)),n=3..30); # Robert Israel, Jul 05 2015
-
Mathematica
a=Log[1/(1-x)];Range[0,20]! CoefficientList[Series[a^3/3!,{x,0,20}],x] f[n_] := Abs@ StirlingS1[n, 3]; Array[f, 19, 3] Abs[StirlingS1[Range[3,30],3]] (* Harvey P. Dale, Jun 23 2014 *) f[n_] := Gamma[n]*(HarmonicNumber[n - 1]^2 + Zeta[2, n] - Zeta[2])/2; Array[f, 19, 3] (* Robert G. Wilson v, Jul 05 2015 *)
-
MuPAD
f := proc(n) option remember; begin n^3*f(n-3)-(3*n^2+3*n+1)*f(n-2)+3*(n+1)*f(n-1) end_proc: f(0) := 1: f(1) := 6: f(2) := 35:
-
PARI
for(n=2,50,print1(polcoeff(prod(i=1,n,x+i),2,x),","))
-
Sage
[stirling_number1(i+2,3) for i in range(1,22)] # Zerinvary Lajos, Jun 27 2008
Formula
Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^2; or a(n) = P''(n-1,0)/2!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 3]
E.g.f.: -log(1-x)^3/3!.
a(n) is the coefficient of x^(n+3) in (-log(1-x))^3, multiplied by (n+3)!/6.
a(n) = ((Sum_{i=1..n-1} 1/i)^2 - Sum_{i=1..n-1} 1/i^2)*(n-1)!/2 for n >= 3. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 18 2000
a(n) = det(|S(i+3,j+2)|, 1 <= i,j <= n-3), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
a(n) = Gamma(n)*(HarmonicNumber(n-1)^2 + Zeta(2,n) - Zeta(2))/2. - Gerry Martens, Jul 05 2015
From Petros Hadjicostas, Jun 28 2020: (Start)
a(n) = (n-3)! + (2*n-3)*a(n-1) - (n-2)^2*a(n-2) for n >= 5.
a(n) = 3*(n-2)*a(n-1) - (3*n^2-15*n+19)*a(n-2) + (n-3)^3*a(n-3) for n >= 6. (End)
Comments