cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000420 Powers of 7: a(n) = 7^n.

Original entry on oeis.org

1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010407, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612001, 558545864083284007
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 7), L(1, 7), P(1, 7), T(1, 7). Essentially same as Pisot sequences E(7, 49), L(7, 49), P(7, 49), T(7, 49). See A008776 for definitions of Pisot sequences.
Sum of coefficients of expansion of (1+x+x^2+x^3+x^4+x^5+x^6)^n.
a(n) is number of compositions of natural numbers into n parts < 7.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 7-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Numbers n such that sigma(7n) = 7n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
Number of ways to assign truth values to n ternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 49, since for the proposition '(a v b v c) & (d v e v f)' there are 49 assignments that make the proposition true. - Ori Milstein, Dec 31 2022
Equivalently, the number of length-n words over an alphabet with seven letters. - Joerg Arndt, Jan 01 2023

Examples

			a(2)=49 there are 49 compositions of natural numbers into 2 parts < 7.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49).

Programs

Formula

a(n) = 7^n.
a(0) = 1; a(n) = 7*a(n-1).
G.f.: 1/(1-7*x).
E.g.f.: exp(7*x).
4/7 - 5/7^2 + 4/7^3 - 5/7^4 + ... = 23/48. [Jolley, Summation of Series, Dover, 1961]