A000420 Powers of 7: a(n) = 7^n.
1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801, 40353607, 282475249, 1977326743, 13841287201, 96889010407, 678223072849, 4747561509943, 33232930569601, 232630513987207, 1628413597910449, 11398895185373143, 79792266297612001, 558545864083284007
Offset: 0
Examples
a(2)=49 there are 49 compositions of natural numbers into 2 parts < 7.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 272
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Index entries for linear recurrences with constant coefficients, signature (7).
Crossrefs
Programs
-
Haskell
a000420 = (7 ^) a000420_list = iterate (* 7) 1 -- Reinhard Zumkeller, Apr 29 2015
-
Magma
[7^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
Maple
A000420:=-1/(-1+7*z); # Simon Plouffe in his 1992 dissertation. [This is actually the generating function, so convert(series(...),list) would yield the actual sequence. - M. F. Hasler, Apr 19 2015] A000420 := n -> 7^n; # M. F. Hasler, Apr 19 2015
-
Mathematica
Table[7^n, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
-
Maxima
makelist(7^n,n,0,20); /* Martin Ettl, Dec 27 2012 */
-
PARI
a(n)=7^n \\ Charles R Greathouse IV, Jul 28 2015
Formula
a(n) = 7^n.
a(0) = 1; a(n) = 7*a(n-1).
G.f.: 1/(1-7*x).
E.g.f.: exp(7*x).
4/7 - 5/7^2 + 4/7^3 - 5/7^4 + ... = 23/48. [Jolley, Summation of Series, Dover, 1961]
Comments