cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000453 Stirling numbers of the second kind, S(n,4).

Original entry on oeis.org

1, 10, 65, 350, 1701, 7770, 34105, 145750, 611501, 2532530, 10391745, 42355950, 171798901, 694337290, 2798806985, 11259666950, 45232115901, 181509070050, 727778623825, 2916342574750, 11681056634501, 46771289738810, 187226356946265, 749329038535350
Offset: 4

Views

Author

Keywords

Comments

Given a set {1,2,3,4}, a(n) is the number of occurrences where the first 2 comes after the first '1', the first '3' after the first '2' and the first '4' after the first '3' in a list of n+3. For example, a(1): 1234; a(2): 11234, 12134, 12314, 12341, 12234, 12324, 12342, 12334, 12343, 12344. Related to the cereal box problem. - Kevin Nowaczyk, Aug 02 2007
a(n) is the number of partitions of [n] into 4 nonempty subsets. - Enrique Navarrete, Aug 27 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008277 (Stirling2 triangle), A016269, A056280 (Mobius transform).

Programs

Formula

G.f.: x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)).
E.g.f.: (exp(x)-1)^4/4!.
a(n) = (4^n - 4*3^n + 6*2^n - 4)/24. - Kevin Nowaczyk, Aug 02 2007
a(n) = det(|s(i+4,j+3)|, 1 <= i,j <= n-4), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4). - Wesley Ivan Hurt, Oct 10 2021