A000460 Eulerian numbers (Euler's triangle: column k=3 of A008292, column k=2 of A173018).
1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739, 41932745, 126781020, 382439924, 1151775897, 3464764515, 10414216090, 31284590870, 93941852511, 282010106381, 846416194536, 2540053889352, 7621839388981, 22869007827143
Offset: 3
References
- L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- J. B. Remmel et al., The combinatorial properties of the Benoumhani polynomials for the Whitney numbers of Dowling lattices, Discrete Math., 342 (2019), 2966-2983. See page 2981.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
- E. T. Frankel, A calculus of figurate numbers and finite differences, American Mathematical Monthly, 57 (1950), 14-25. [Annotated scanned copy]
- Wayne A. Johnson, An Euler operator approach to Ehrhart series, arXiv:2303.16991 [math.CO], 2023.
- J. C. P. Miller, Letter to N. J. A. Sloane, Mar 26 1971
- O. J. Munch, Om potensproduktsummer [Norwegian, English summary], Nordisk Matematisk Tidskrift, 7 (1959), 5-19. [Annotated scanned copy]
- O. J. Munch, Om potensproduktsummer [ Norwegian, English summary ], Nordisk Matematisk Tidskrift, 7 (1959), 5-19.
- Nagatomo Nakamura, Pseudo-Normal Random Number Generation via the Eulerian Numbers, Josai Mathematical Monographs, vol 8, pp. 85-95, 2015.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- J. Riordan, Review of Frankel (1950) [Annotated scanned copy]
- Sittipong Thamrongpairoj, Dowling Set Partitions, and Positional Marked Patterns, Ph. D. Dissertation, University of California-San Diego (2019).
- Eric Weisstein's World of Mathematics, Eulerian Number
- Robert G. Wilson v, Letter to N. J. A. Sloane, Apr. 1994
- Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12).
Crossrefs
Programs
-
Magma
[3^n-(n+1)*2^n+(1/2)*n*(n+1): n in [3..30]]; // Vincenzo Librandi, Apr 18 2017
-
Magma
[EulerianNumber(n, 2): n in [3..40]]; // G. C. Greubel, Oct 02 2024
-
Maple
A000460:=-z*(-1-z+4*z**2)/(-1+3*z)/(2*z-1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
Mathematica
k = 3; Table[k^(n+k-1) + Sum[(-1)^i/i!*(k-i)^(n+k-1) * Product[n+k+1-j, {j, 1, i}], {i, k-1}], {n, 23}] (* or *) Array[3^(# + 2) - (# + 3)*2^(# + 2) + (1/2)*(# + 2)*(# + 3) &, 23] (* Michael De Vlieger, Aug 04 2015, after PARI *)
-
PARI
A000460(n) = 3^(n+2)-(n+3)*2^(n+2)+(1/2)*(n+2)*(n+3)
-
SageMath
def A000460(n): return 3^n - (n+1)*2^n + binomial(n+1,2) [A000460(n) for n in range(3,31)] # G. C. Greubel, Oct 02 2024
Formula
a(n) = 3^n - (n+1)*2^n + (1/2)*n*(n+1). - Randall L Rathbun, Jan 22 2002
G.f.: x^3*(1+x-4*x^2)/((1-x)^3*(1-2*x)^2*(1-3*x)). - Mike Zabrocki, Nov 10 2004
E.g.f.: exp(x)*(exp(2*x) - (1 + 2*x)*exp(x) + x + x^2/2). - Wolfdieter Lang, Apr 17 2017
Extensions
More terms from Christian G. Bower, May 12 2000
More terms from Mike Zabrocki, Nov 10 2004
Comments