A000478 Number of ways of placing n labeled balls into 3 indistinguishable boxes with at least 2 balls in each box.
15, 105, 490, 1918, 6825, 22935, 74316, 235092, 731731, 2252341, 6879678, 20900922, 63259533, 190957923, 575363776, 1731333808, 5205011031, 15638101281, 46962537810, 140988276150, 423174543025, 1269959836015, 3810785476980, 11434235478348, 34306598748315, 102927849307725
Offset: 6
Examples
a(6) = 6!/(2!*2!*2!*3!) = 15.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 296.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=6..200
- Daniel J. Bernstein, Andreas Hülsing, Decisional second-preimage resistance: When does SPR imply PRE?, (2019).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan's Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
- Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12).
Programs
-
Mathematica
Table[(1+n+n^2)/2-(1/2+n/4)*2^n+3^n/6,{n,6,30}] (* or *) LinearRecurrence[ {10,-40,82,-91,52,-12},{15,105,490,1918,6825,22935},25] (* Harvey P. Dale, Jul 17 2011 *) offset = 6; terms = 26; egf = (Exp[x]-1-x)^3/3!; Drop[CoefficientList[egf + O[x]^(terms+offset), x]*Range[0, terms+offset-1]!, offset] (* Jean-François Alcover, May 07 2017 *)
-
PARI
Vec(x^6*(12*x^3-40*x^2+45*x-15)/((1-x)^3*(1-2*x)^2*(3*x-1))+O(x^66)) /* Joerg Arndt, Apr 10 2013 */
-
Python
# based on Vladimir Kruchinin's formula def A000478(): a = 15; n = 7; z = 4; s = 15; while True: yield a z = 2*z; s += n*(z-2) + 3; a = 3*a + s; n += 1 a = A000478(); print([next(a) for in range(6, 32)]) # _Peter Luschny, Oct 04 2018
Formula
E.g.f.: ((exp(x) - 1 - x)^3)/3!.
G.f.: x^6*(12*x^3 - 40*x^2 + 45*x - 15)/((1 - x)^3*(1 - 2*x)^2*(3*x - 1)). - Simon Plouffe in his 1992 dissertation
a(n) = (1+n+n^2)/2 - (1/2 + n/4)*2^n + 3^n/6. - Michael Steyer (m.steyer(AT)osram.de), Jan 09 2005
a(n) = 10*a(n-1) - 40*a(n-2) + 82*a(n-3) - 91*a(n-4) + 52*a(n-5) - 12*a(n-6), n > 11. - Harvey P. Dale based on Michael Steyer's formula, Jul 17 2011
a(n) = 3*a(n-1) + (2^(n-3)-n+1)*(n-1), a(n)=0, n < 6. - Vladimir Kruchinin, Oct 04 2018
Extensions
Additional comments from Michael Steyer, Dec 02 2000
More terms from James Sellers, Dec 06 2000
More terms from Joerg Arndt, Apr 10 2013
Comments