cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000481 Stirling numbers of the second kind, S(n,5).

Original entry on oeis.org

1, 15, 140, 1050, 6951, 42525, 246730, 1379400, 7508501, 40075035, 210766920, 1096190550, 5652751651, 28958095545, 147589284710, 749206090500, 3791262568401, 19137821912055, 96416888184100, 485000783495250, 2436684974110751, 12230196160292565, 61338207158409090
Offset: 5

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008277.

Programs

Formula

a(n) = A008277(n, 5) (Stirling2 triangle).
G.f.: x^5/product(1-k*x, k=1..5).
E.g.f.: ((exp(x)-1)^5)/5!.
a(n) = sum(sum(binomial(k,r)*(15)^(k-r)*sum((-85)^(r-m)*binomial(r,m)*sum(binomial(m,j)*binomial(j,n-m-k-j-r)*(225)^(m-j)*(-274)^(r+m+k+2*j-n)*(120)^(n-m-k-j-r),j,0,m),m,0,r),r,0,k),k,1,n), n>0. - Vladimir Kruchinin, Aug 30 2010
a(n) = det(|s(i+5,j+4)|, 1 <= i,j <= n-5), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013

Extensions

More terms from Sean A. Irvine, Nov 14 2010