A000515 a(n) = (2n)!(2n+1)!/n!^4, or equally (2n+1)*binomial(2n,n)^2.
1, 12, 180, 2800, 44100, 698544, 11099088, 176679360, 2815827300, 44914183600, 716830370256, 11445589052352, 182811491808400, 2920656969720000, 46670906271240000, 745904795339462400, 11922821963004219300, 190600129650794094000, 3047248986392325330000
Offset: 0
References
- E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.
- A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- G. E. Andrews and P. Paule, Some questions concerning computer-generated proofs of a binomial double-sum identity, J. Symbolic Computation 11(1994), 1-7.
- D. Galakhov, A. Mironov and A. Morozov, Wall Crossing Invariants: from quantum mechanics to knots, arXiv preprint arXiv:1410.8482 [hep-th], 2014. See Eq. (A.15).
- R. K. Guy, Letter to N. J. A. Sloane, Sep 1986
- J. E. Lauer, Letter to N. J. A. Sloane, Dec 1980
- D. H. Lehmer, Review of A. N. Lowan et al., "Table of the zeros of the Legendre polynomials of order 1-16...", in Math. Tables Aids Computation (MTAC), 1 (1943-1945), 52-53.
- Pedro J. Miana and Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Omega3. Remark 3 p. 1882.
- I. Nemes et al., How to do Monthly problems with your computer, Amer. Math. Monthly, 104 (1997), 505-519.
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013 (see Omega_3).
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
Crossrefs
Programs
-
Magma
[(2*n+1)*Binomial(2*n,n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
-
Maple
with(linalg): for n from 1 to 24 do print(det(hilbert(n))/det(hilbert(n+1))): od;
-
Mathematica
A000515[n_] := (2*n + 1)*Binomial[2 n, n]^2 (* Enrique Pérez Herrero, Mar 31 2010 *) Table[(2 n + 1) (n + 1)^2 CatalanNumber[n]^2, {n, 0, 18}] (* Jan Mangaldan, Sep 23 2021 *)
-
PARI
vector(100, n, n--; (2*n+1)*binomial(2*n,n)^2) \\ Altug Alkan, Oct 08 2015
Formula
a(n) ~ 2*Pi^-1*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
O.g.f.: (2/Pi)*EllipticE(4*sqrt(x))/(1-16*x). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(0, 2*x)*(BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Jun 15 2005
E.g.f.: Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)! = BesselI(0, 2x)^2*x. - Michael Somos, Jun 22 2005
E.g.f.: x*(BesselI(0, 2*x))^2 = x+(2*x^3)/(U(0)-2*x^2); U(k) = (2*x^2)*(2*k+1) + (k+1)^3 - (2*x^2)*(2*k+3)*((k+1)^3)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 23 2011
n^2*a(n) - 4*(2*n-1)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Sep 08 2013
O.g.f.: hypergeom([1/2, 3/2], [1], 16*x). - Peter Luschny, Oct 08 2015
Comments