A000483
Associated Stirling numbers: second-order reciprocal Stirling numbers (Fekete) a(n) = [[n, 3]]. The number of 3-orbit permutations of an n-set with at least 2 elements in each orbit.
Original entry on oeis.org
15, 210, 2380, 26432, 303660, 3678840, 47324376, 647536032, 9418945536, 145410580224, 2377609752960, 41082721413120, 748459539843840, 14345340443665920, 288650580508961280, 6085390148673177600, 134167064248901376000, 3088040233895705088000, 74077507611407752704000, 1849221425299053367296000
Offset: 6
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn=25;a=Log[1/(1-x)]-x;Drop[Range[0,nn]!CoefficientList[Series[a^3/3!, {x,0,nn}],x],6] (* Geoffrey Critzer, Nov 03 2012 *)
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
A001784
Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+3, n]]. The number of n-orbit permutations of a (2n+3)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).
Original entry on oeis.org
1, 24, 924, 26432, 705320, 18858840, 520059540, 14980405440, 453247114320, 14433720701400, 483908513388300, 17068210823664000, 632607429473019000, 24602295329058447000, 1002393959071727722500, 42720592574082543120000
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- H. W. Gould, Harris Kwong, and Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.
- C. Jordan, On Stirling's Numbers, Tohoku Math. J., 37 (1933), 254-278.
-
with(combinat):s1 := (n,k)->sum((-1)^i*binomial(n,i)*abs(stirling1(n-i,k-i)),i=0..n); 1; for j from 1 to 20 do s1(2*j+3,j); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
-
Prepend[Table[Sum[(-1)^i Binomial[2 n + 3, 2 n + 3 - i] Abs@ StirlingS1[2 n + 3 - i, n - i], {i, 0, n}], {n, 15}] , 1] (* Michael De Vlieger, Jan 04 2016 *)
-
a(n) = if (!n, 1, sum(i=0, n, (-1)^i*binomial(2*n+3, 2*n+3-i)*abs(stirling(2*n+3-i, n-i, 1)))); \\ Michel Marcus, Jan 04 2016
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
A001785
Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+4, n]]. The number of n-orbit permutations of a (2n+4)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).
Original entry on oeis.org
1, 120, 7308, 303660, 11098780, 389449060, 13642629000, 486591585480, 17856935296200, 678103775949600, 26726282654771700, 1094862336960892500, 46641683693715610500, 2066075391660447667500, 95122549872697437090000
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
- C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- H. W. Gould, Harris Kwong, and Jocelyn Quaintance, On Certain Sums of Stirling Numbers with Binomial Coefficients, J. Integer Sequences, 18 (2015), #15.9.6.
- C. Jordan, On Stirling's Numbers, Tohoku Math. J., 37 (1933), 254-278.
-
[1] cat [(1113+1447*n+600*n^2+80*n^3)*Factorial(2*n+4)/(1215*2^(n+ 3)*Factorial(n-1)): n in [1..15]]; // Vincenzo Librandi, Jan 18 2016
-
with(combinat):s1 := (n,k)->sum((-1)^i*binomial(n,i)*abs(stirling1(n-i,k-i)),i=0..n); for j from 1 to 20 do s1(2*j+4,j); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
-
Prepend[Table[Sum[(-1)^i Binomial[2 n + 4, 2 n + 4 - i] Abs@ StirlingS1[2 n + 4 - i, n - i], {i, 0, n}], {n, 14}] , 1] (* Michael De Vlieger, Jan 04 2016 *)
-
a(n) = if (!n, 1, sum(i=0, n, (-1)^i*binomial(2*n+4, 2*n+4-i)*abs(stirling(2*n+4-i, n-i, 1)))); \\ Michel Marcus, Jan 04 2016
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Showing 1-3 of 3 results.