cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A008306 Triangle T(n,k) read by rows: associated Stirling numbers of first kind (n >= 2, 1 <= k <= floor(n/2)).

Original entry on oeis.org

1, 2, 6, 3, 24, 20, 120, 130, 15, 720, 924, 210, 5040, 7308, 2380, 105, 40320, 64224, 26432, 2520, 362880, 623376, 303660, 44100, 945, 3628800, 6636960, 3678840, 705320, 34650, 39916800, 76998240, 47324376, 11098780, 866250, 10395
Offset: 2

Views

Author

Keywords

Comments

Also, T(n,k) is the number of derangements (permutations with no fixed points) of {1..n} with k cycles.
The sum of the n-th row is the n-th subfactorial: A000166(n). - Gary Detlefs, Jul 14 2010

Examples

			Rows 2 through 7 are:
    1;
    2;
    6,   3;
   24,  20;
  120, 130,  15;
  720, 924, 210;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 75.

Crossrefs

Cf. A000166, A106828 (another version), A079510 (rearranged triangle), A235706 (specializations).
Diagonals: A000142, A000276, A000483.
Diagonals give reversed rows of A111999.

Programs

  • Haskell
    a008306 n k = a008306_tabf !! (n-2) !! (k-1)
    a008306_row n = a008306_tabf !! (n-2)
    a008306_tabf = map (fst . fst) $ iterate f (([1], [2]), 3) where
       f ((us, vs), x) =
         ((vs, map (* x) $ zipWith (+) ([0] ++ us) (vs ++ [0])), x + 1)
    -- Reinhard Zumkeller, Aug 05 2013
  • Maple
    A008306 := proc(n,k) local j;
    add(binomial(j,n-2*k)*A008517(n-k,j),j=0..n-k) end;
    seq(print(seq(A008306(n,k),k=1..iquo(n,2))),n=2..12):
    # Peter Luschny, Apr 20 2011
  • Mathematica
    t[0, 0] = 1; t[n_, 0] = 0; t[n_, k_] /; k > n/2 = 0; t[n_, k_] := t[n, k] = (n - 1)*(t[n - 1, k] + t[n - 2, k - 1]); A008306 = Flatten[ Table[ t[n, k], {n, 2, 12}, {k, 1, Quotient[n, 2]}]] (* Jean-François Alcover, Jan 25 2012, after David Callan *)
  • PARI
    { A008306(n,k) = (-1)^(n+k) * sum(i=0,k, (-1)^i * binomial(n,i) * stirling(n-i,k-i,1) ); } \\ Max Alekseyev, Sep 08 2018
    

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * binomial(n,i) * |stirling1(n-i,k-i)| = (-1)^(n+k) * Sum_{i=0..k} (-1)^i * binomial(n,i) * A008275(n-i,k-i). - Max Alekseyev, Sep 08 2018
E.g.f.: 1 + Sum_{1 <= 2*k <= n} T(n, k)*t^n*u^k/n! = exp(-t*u)*(1-t)^(-u).
Recurrence: T(n, k) = (n-1)*(T(n-1, k) + T(n-2, k-1)) for 1 <= k <= n/2 with boundary conditions T(0,0) = 1, T(n,0) = 0 for n >= 1, and T(n,k) = 0 for k > n/2. - David Callan, May 16 2005
E.g.f. for column k: B(A(x)) where A(x) = log(1/1-x)-x and B(x) = x^k/k!.
From Tom Copeland, Jan 05 2016: (Start)
The row polynomials of this signed array are the orthogonal NL(n,x;x-n) = n! Sum_{k=0..n} binomial(x,n-k)*(-x)^k/k!, the normalized Laguerre polynomials of order (x-n) as discussed in Gautschi (the Temme, Carlitz, and Karlin and McGregor references come from this paper) in regard to asymptotic expansions of the upper incomplete gamma function--Tricomi's Cinderella of special functions.
e^(x*t)*(1-t)^x = Sum_{n>=0} NL(n,x;x-n)*x^n/n!.
The first few are
NL(0,x) = 1
NL(1,x) = 0
NL(2,x) = -x
NL(3,x) = 2*x
NL(4,x) = -6*x + 3*x^2.
With D=d/dx, :xD:^n = x^n D^n, :Dx:^n = D^n x^n, and K(a,b,c), the Kummer confluent hypergeometric function, NL(n,x;y-n) = n!*e^x binomial(xD+y,n)*e^(-x) = n!*e^x Sum_{k=0..n} binomial(k+y,n) (-x)^k/k! = e^x x^(-y+n) D^n (x^y e^(-x)) = e^x x^(-y+n) :Dx:^n x^(y-n)*e^(-x) = e^x*x^(-y+n)*n!*L(n,:xD:,0)*x^(y-n)*e^(-x) = n! binomial(y,n)*K(-n,y-n+1,x) = n!*e^x*(-1)^n*binomial(-xD-y+n-1,n)*e^(-x). Evaluate these expressions at y=x after the derivative operations to obtain NL(n,x;x-n). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001

A136394 Triangle read by rows: T(n,k) is the number of permutations of an n-set having k cycles of size > 1 (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 20, 3, 1, 84, 35, 1, 409, 295, 15, 1, 2365, 2359, 315, 1, 16064, 19670, 4480, 105, 1, 125664, 177078, 56672, 3465, 1, 1112073, 1738326, 703430, 74025, 945, 1, 10976173, 18607446, 8941790, 1346345, 45045, 1, 119481284, 216400569, 118685336
Offset: 0

Views

Author

Vladeta Jovovic, May 03 2008

Keywords

Examples

			Triangle (n,k) begins:
  1;
  1;
  1,    1;
  1,    5;
  1,   20,    3;
  1,   84,   35;
  1,  409,  295,  15;
  1, 2365, 2359, 315;
  ...
		

Crossrefs

Programs

  • Maple
    egf:= proc(k::nonnegint) option remember; x-> exp(x)* ((-x-ln(1-x))^k)/k! end; T:= (n,k)-> coeff(series(egf(k)(x), x=0, n+1), x, n) *n!; seq(seq(T(n,k), k=0..n/2), n=0..30); # Alois P. Heinz, Aug 14 2008
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
          `if`(i>1, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 25 2016
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k<0 or k>2*n, 0,
          `if`(n=0, 1, add(T(n-i, k-`if`(i>1, 1, 0))*
           mul(n-j, j=1..i-1), i=1..n)))
        end:
    seq(seq(T(n,k), k=0..n/2), n=0..15);  # Alois P. Heinz, Jul 16 2017
  • Mathematica
    max = 12; egf = Exp[x*(1-y)]/(1-x)^y; s = Series[egf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]*n!; t[0, 0] = t[1, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jan 28 2014 *)

Formula

E.g.f.: exp(x*(1-y))/(1-x)^y. Binomial transform of triangle A008306. exp(x)*((-x-log(1-x))^k)/k! is e.g.f. of k-th column.
From Alois P. Heinz, Jul 13 2017: (Start)
T(2n,n) = A001147(n).
T(2n+1,n) = A051577(n) = (2*n+3)!!/3 = A001147(n+2)/3. (End)
From Alois P. Heinz, Aug 17 2023: (Start)
Sum_{k=0..floor(n/2)} k * T(n,k) = A001705(n-1) for n>=1.
Sum_{k=0..floor(n/2)} (-1)^k * T(n,k) = A159964(n-1) for n>=1. (End)

A259456 Triangle read by rows, giving coefficients in an expansion of absolute values of Stirling numbers of the first kind in terms of binomial coefficients.

Original entry on oeis.org

1, 2, 3, 6, 20, 15, 24, 130, 210, 105, 120, 924, 2380, 2520, 945, 720, 7308, 26432, 44100, 34650, 10395, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025, 362880, 6636960, 47324376, 177331440, 389449060, 520059540, 416215800
Offset: 0

Views

Author

N. J. A. Sloane, Jun 30 2015

Keywords

Examples

			Triangle begins:
1,
2,3,
6,20,15,
24,130,210,105,
120,924,2380,2520,945,
...
For k=4 and j=2 in Knuth's equation, |S1(4,4-2)| = |S1(4,2)| = |A008275(4,2)| = 11 = p_{2,1}*C(4,3) +p_{2,2}*C(4,4) = 2*4+3*1. - _R. J. Mathar_, Jul 16 2015
		

References

  • L. Comtet, Advanced Combinatorics (1974), Chapter VI, page 256.
  • DJ Jeffrey, GA Kalugin, N Murdoch, Lagrange inversion and Lambert W, Preprint 2015; http://www.apmaths.uwo.ca/~djeffrey/Offprints/JeffreySYNASC2015paper17.pdf
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 152. Table C_{m, nu}.

Crossrefs

Cf. This is a row reversed and unsigned version of A111999.
Cf. A008275, A000276 (2nd column), A000483 (3rd column), A000142 (1st column).
Cf. A133932.

Programs

  • Maple
    A259456 := proc(n,k)
        option remember;
        if k < 1 or k > n  then
            0 ;
        elif n = 1 then
            1;
        else
            procname(n-1,k-1)+procname(n-1,k);
            %*(n+k-1) ;
        end if;
    end proc:
    seq(seq(A259456(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jul 18 2015
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 1 || k > n, 0, If[n == 1, 1, (T[n-1, k-1] + T[n-1, k])(n+k-1)]];
    Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)

Formula

T(n,k) = (n-k-1)*( T(n-1,k-1)+T(n-1,k) ), n>=1, 1<=k<=n. [Berg, Eq. 6]
The general results on the convolution of the refined partition polynomials of A133932, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these unsigned polynomials. - Tom Copeland, Sep 20 2016

A000907 Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+2, n]]. The number of n-orbit permutations of a (2n+2)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).

Original entry on oeis.org

6, 130, 2380, 44100, 866250, 18288270, 416215800, 10199989800, 268438920750, 7562120816250, 227266937597700, 7262844156067500, 246045975136211250, 8810836639999143750, 332624558868351750000, 13205706717164131170000
Offset: 1

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s1 := (n,k)->sum((-1)^i*binomial(n,i)*abs(stirling1(n-i,k-i)),i=0..n); for j from 1 to 20 do s1(2*j+2,j); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
  • Mathematica
    Table[Sum[(-1)^i Binomial[2 n + 2, 2 n + 2 - i] Abs@ StirlingS1[2 n + 2 - i, n - i], {i, 0, n}], {n, 16}] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    a(n) = sum(i=0, n, (-1)^i*binomial(2*n+2, 2*n+2-i)*abs(stirling(2*n+2-i, n-i, 1))); \\ Michel Marcus, Jan 04 2016

Formula

a(n) = [[2n+2, n]] = Sum_{i=0..n} (-1)^i*binomial(2n+2, 2n+2-i)*[2n+2-i, n-i] where [n, k] is the unsigned Stirling number of the first kind. - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Conjecture: n*(4*n+5)*a(n) -(2*n+3)*(n+2)*(4*n+9)*a(n-1)=0. - R. J. Mathar, Apr 30 2015
a(n) = (4*n+5)*(2*n+2)!/(9*2^(n+1)*(n-1)!). - Vaclav Kotesovec, Jan 17 2016

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Offset changed to 1 by Michel Marcus, Jan 04 2016

A001784 Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+3, n]]. The number of n-orbit permutations of a (2n+3)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).

Original entry on oeis.org

1, 24, 924, 26432, 705320, 18858840, 520059540, 14980405440, 453247114320, 14433720701400, 483908513388300, 17068210823664000, 632607429473019000, 24602295329058447000, 1002393959071727722500, 42720592574082543120000
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combinat):s1 := (n,k)->sum((-1)^i*binomial(n,i)*abs(stirling1(n-i,k-i)),i=0..n); 1; for j from 1 to 20 do s1(2*j+3,j); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
  • Mathematica
    Prepend[Table[Sum[(-1)^i Binomial[2 n + 3, 2 n + 3 - i] Abs@ StirlingS1[2 n + 3 - i, n - i], {i, 0, n}], {n, 15}] , 1] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    a(n) = if (!n, 1, sum(i=0, n, (-1)^i*binomial(2*n+3, 2*n+3-i)*abs(stirling(2*n+3-i, n-i, 1)))); \\ Michel Marcus, Jan 04 2016

Formula

a(n) = [[2n+3, n]] = Sum_{i=0..n} (-1)^i*binomial(2n+3, 2n+3-i)*[2n+3-i, n-i] where [n, k] is the unsigned Stirling number of the first kind. - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Conjecture: 480*(n+1)*a(n) +30*(-32*n^2-14821*n+42287)*a(n-1) +(878700*n^2-403433*n+5134227)*a(n-2) +(911423*n-656446)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 18 2015
Conjecture: (n-2)*(20*n^2-5*n-3)*a(n) -n*(2*n+1)*(20*n^2+35*n+12)*a(n-1)=0. - R. J. Mathar, Jul 18 2015
For n>0, a(n) = (67 + 75*n + 20*n^2)*(2*n+3)!/(405*2^n*(n-1)!). - Vaclav Kotesovec, Jan 17 2016

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Offset changed to 0 by Michel Marcus, Jan 04 2016

A001785 Second-order reciprocal Stirling number (Fekete) a(n) = [[2n+4, n]]. The number of n-orbit permutations of a (2n+4)-set with at least 2 elements in each orbit. Also known as associated Stirling numbers of the first kind (e.g., Comtet).

Original entry on oeis.org

1, 120, 7308, 303660, 11098780, 389449060, 13642629000, 486591585480, 17856935296200, 678103775949600, 26726282654771700, 1094862336960892500, 46641683693715610500, 2066075391660447667500, 95122549872697437090000
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256.
  • C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [1] cat [(1113+1447*n+600*n^2+80*n^3)*Factorial(2*n+4)/(1215*2^(n+ 3)*Factorial(n-1)): n in [1..15]]; // Vincenzo Librandi, Jan 18 2016
  • Maple
    with(combinat):s1 := (n,k)->sum((-1)^i*binomial(n,i)*abs(stirling1(n-i,k-i)),i=0..n); for j from 1 to 20 do s1(2*j+4,j); od; # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
  • Mathematica
    Prepend[Table[Sum[(-1)^i Binomial[2 n + 4, 2 n + 4 - i] Abs@ StirlingS1[2 n + 4 - i, n - i], {i, 0, n}], {n, 14}] , 1] (* Michael De Vlieger, Jan 04 2016 *)
  • PARI
    a(n) = if (!n, 1, sum(i=0, n, (-1)^i*binomial(2*n+4, 2*n+4-i)*abs(stirling(2*n+4-i, n-i, 1)))); \\ Michel Marcus, Jan 04 2016
    

Formula

a(n) = [[2n+4, n]] = Sum_{i=0..n} (-1)^i*binomial(2n+4, 2n+4-i)*[2n+4-i, n-i] where [n, k] is the unsigned Stirling number of the first kind. - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Recurrence: 30*(n-1)*(116*n+75)*a(n) + (-6960*n^3-49760*n^2-112691*n-80787)*a(n-1) + (n+1)*(2*n+1)*(20*n+21)*a(n-2) = 0. - R. J. Mathar, Jul 18 2015
For n>0, a(n) = (1113 + 1447*n + 600*n^2 + 80*n^3)*(2*n+4)!/(1215*2^(n+3)*(n-1)!). - Vaclav Kotesovec, Jan 17 2016
Recurrence (for n>1): (n-1)*(80*n^3 + 360*n^2 + 487*n + 186)*a(n) = (n+2)*(2*n+3)*(80*n^3 + 600*n^2 + 1447*n + 1113)*a(n-1). - Vaclav Kotesovec, Jan 18 2016

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Offset changed to 0 by Michel Marcus, Jan 04 2016
Showing 1-6 of 6 results.