cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000932 a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 6, 18, 48, 156, 492, 1740, 6168, 23568, 91416, 374232, 1562640, 6801888, 30241488, 139071696, 653176992, 3156467520, 15566830368, 78696180768, 405599618496, 2136915595392, 11465706820800, 62751681110208, 349394351630208, 1980938060495616
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Apr 20 2009: (Start)
Uses the same recursive operation as A000085.
Eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) as the main diagonal and (0, 2, 3, 4, 5, ...) as the subdiagonal. To generate A000085, replace the "0" in the subdiagonal with "1". (End)

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 6*x^3/3! + 18*x^4/4! + 48*x^5/5! + 156*x^6/6! + ...
If offset 1, then e.g.f. A(x) = x + x^2/2! + 3*x^3/3! + 6*x^4/4! + 18*x^5/5! + 48*x^6/6! + 156*x^7/7! + ... + a(n-1)*x^n/n! + ...
satisfies F(A(x)) = 1 + x, where F(x) = e.g.f. of A173895:
F(x) = 1 + x - x^2/2! + 9*x^4/4! - 48*x^5/5! + 15*x^6/6! + 2448*x^7/7! + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + n a[n - 2], a[0] == a[1] == 1}, a, {n, 26}] (* Eric W. Weisstein, May 08 2013 *)
    t = {1, 1}; Do[AppendTo[t, t[[-1]] + n*t[[-2]]], {n, 2, 30}]; t (* T. D. Noe, Jun 21 2012 *)
    f[x_]:=2^(-x/2-2)*Sqrt[Pi*E]*(Erf[1/Sqrt[2]]-1)*(HermiteH[x+1,I/Sqrt[2]]*(Sin[Pi*x/2]+I*Cos[Pi*x/2])+HermiteH[x+1,-I/Sqrt[2]]*(Sin[Pi*x/2]-I*Cos[Pi*x/2]))+2^(x/2+1)*Cos[Pi*x]*Gamma[x+2]*HermiteH[-x-2,1/Sqrt[2]]
    Expand[FunctionExpand[Array[f,20,0]]] (* Velin Yanev, Oct 13 2021 *)

Formula

From Paul D. Hanna, Aug 23 2011: (Start)
E.g.f. satisfies: A(x) = 1 + (1+x)*Integral A(x) dx.
E.g.f. satisfies: A(x) = A'(x)/(1+x) - (A(x)-1)/(1+x)^2.
If offset 1, then e.g.f. A(x) satisfies: F(A(x)) = 1 + x, where F(x) equals the e.g.f. of A173895 and satisfies: F'(x) = 1/(1 + x*F(x)). (End)
a(n)/a(n-1) = sqrt(n)+1/2+o(1) - Benoit Cloitre, Jul 02 2004
a(n) = -sqrt(Pi)/2*Sum[(-1)^k*2^(k/2)*Binomial[n,k]*(HypergeometricPFQRegularized[{1,k-n},{1+(k-n)/2,(1/2)*(1+k-n)},-(1/2)]+(-k+n)*HypergeometricPFQRegularized[{1,1+k-n},{1+(k-n)/2,(1/2)*(3+k-n)},-(1/2)])*HypergeometricU[1-k/2,3/2,1/2],{k,1,n}]. - Eric W. Weisstein, May 08 2013
E.g.f.: (1/2)*(2+e^(1/2*(1+x)^2)*sqrt(2*Pi)*(1+x)*(-erf(1/sqrt(2))+erf((1+x)/sqrt(2)))). - Eric W. Weisstein, May 08 2013
a(n) ~ sqrt(Pi)*(1-erf(1/sqrt(2)))/2 * n^(n/2+1/2)*exp(sqrt(n)-n/2+1/4) * (1+19/(24*sqrt(n))). - Vaclav Kotesovec, Aug 10 2013
a(n) = Sum_{k=0..n} A180048(n,k). - Philippe Deléham, Oct 28 2013

Extensions

More terms from Benoit Cloitre, Jul 02 2004