cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A180048 Coefficient triangle of the denominators of the (n-th convergents to) the continued fraction 1/(w+2/(w+3/(w+4/... . Conjectured to equal unsigned version of A137286.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 8, 0, 9, 0, 1, 0, 33, 0, 14, 0, 1, 48, 0, 87, 0, 20, 0, 1, 0, 279, 0, 185, 0, 27, 0, 1, 384, 0, 975, 0, 345, 0, 35, 0, 1, 0, 2895, 0, 2640, 0, 588, 0, 44, 0, 1, 3840, 0, 12645, 0, 6090, 0, 938, 0, 54, 0, 1, 0, 35685, 0, 41685, 0, 12558, 0, 1422, 0, 65
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the recurrence formula needs formal proof. This continued fraction converges to 0.525135276160981... for w=1. A conjecture by Ramanujan puts this equal to -1 + 1/(sqrt(e*Pi/2) - Sum_{k>=1} 1/(2k-1)!!).
From Alexander Kreinin, Oct 26 2015: (Start)
Let us denote the continued fraction by U(w).
Then it is easy to show that Mill's ratio, R(w) = (1 - Phi(w))/f(w), where Phi is the standard normal distribution function and f is the standard normal density function, satisfies R(w) = 1/(w + U(w)).
Indeed, R(w) = 1/(w+1/(w+2/(w+3/(w+... Then we find U(w) = 1/R(w) - w. It was proved in Alexander Kreinin (arXiv:1405.5852) that R(w+t) + Q(w, t) = exp(w*t + w^2/2)*R(t), where Q(w,t) = Sum_{k>=0} Sum_{m=0..k} q(k,m) * t^m * w^(k+1)/(k+1)!.
Substituting t=0, we obtain R(w) = exp(w^2/2)*sqrt(Pi/2) - Sum_{n>=0} w^(2n+1)/(2n+1)!!. If w=1 we obtain Ramanujan's formula. (End)

Examples

			The denominator of 1/(w+2/(w+3/(w+4/(w+5/(w+6/w))))) equals 48 + 87w^2 + 20w^4 + w^6.
From _Joerg Arndt_, Apr 20 2013: (Start)
Triangle begins
     1;
     0,     1;
     2,     0,     1;
     0,     5,     0,     1;
     8,     0,     9,     0,    1;
     0,    33,     0,    14,    0,   1;
    48,     0,    87,     0,   20,   0,   1;
     0,   279,     0,   185,    0,  27,   0,  1;
   384,     0,   975,     0,  345,   0,  35,  0,  1;
     0,  2895,     0,  2640,    0, 588,   0, 44,  0, 1;
  3840,     0, 12645,     0, 6090,   0, 938,  0, 54, 0, 1;
     0, 35685,     0, 41685,    0, ... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[ CoefficientList[ Denominator[ Together[ Fold[ #2/(w+#1) &, Infinity, Reverse @ Table[ k, {k, 1, n} ] ] ] ], w ], {n, 16} ] (* or equivalently *) Clear[ p ];p[ 0 ]=1; p[ 1 ]=w; p[ n_ ]:=p[ n ]= w*p[ n-1 ] + n*p[ n-2 ]; Table[ CoefficientList[ p[ k ]//Expand, w ], {k,0,15} ]

Formula

p(0)=1; p(1)=w; p(n) = w*p(n-1) + n*p(n-2) (conjecture).
T(n,k) = T(n-1,k-1) + n*T(n-2,k), T(0,0) = 1, T(1,0) = 0, T(1,1) = 1. - Philippe Deléham, Oct 28 2013
sum_{k=0..n} T(n,k) = A000932(n). - Philippe Deléham, Oct 28 2013
T(2n,0) = A000165(n); T(2n+1,1) = A129890(n); T(2n+2,2) = A035101(n+2). - Philippe Deléham, Oct 28 2013

A225435 Numerators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...)))).

Original entry on oeis.org

1, 1, 2, 4, 7, 19, 68, 44, 416, 758, 6092, 24284, 10348, 110864, 997828, 4545476, 827252, 5166356, 255994804, 1289266004, 3332578444, 8757252244, 3766552348, 27079574548, 1434303566956, 4061479240156, 46849154788124, 54858398447372, 816458740546228, 189647639388428
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2013

Keywords

Examples

			1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).
		

Crossrefs

Cf. A225436 (denominators).
Cf. A111129 (decimal digits of infinite c.f.).
Related to A000932.

Programs

  • Mathematica
    Numerator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

Formula

E.g.f.: (1/2)*(-2+e^((1/2)*z*(2+z))*(1+z)(2+sqrt(2*e*Pi)*erf(1/sqrt(2)))-e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*erf((1+z)/sqrt(2))).
Lim_{n->infinity} A225435(n)/A225436(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.

A225436 Denominators of convergents to the general continued fraction 1/(1 + 2/(1 + 3/(1 + 4/(1+ ...)))).

Original entry on oeis.org

1, 3, 3, 9, 12, 39, 123, 87, 771, 1473, 11427, 46779, 19533, 212559, 1890093, 8691981, 1570137, 9863961, 486463449, 2459255649, 6337494039, 16694653089, 7166066763, 51605000913, 2729643372111, 7738039298811, 89176449644619, 104501330075607, 1554311845035993, 361227369257943
Offset: 1

Views

Author

Eric W. Weisstein, May 07 2013

Keywords

Comments

1

Examples

			1, 1/3, 2/3, 4/9, 7/12, 19/39, ... = A225435(n)/A225436(n).
		

Crossrefs

Cf. A225435 (numerators).
Cf. A111129 (decimal digits of infinite c.f.).
Related to A000932.

Programs

  • Mathematica
    Denominator[Table[ContinuedFractionK[k, 1, {k, 1, n}], {n, 30}]]

Formula

E.g.f: (1/2)*(2+e^((1/2)*(1+z)^2)*sqrt(2*Pi)*(1+z)*(-erf(1/sqrt(2))+erf((1+z)/sqrt(2)))).
Limit_{n->oo} A225435(n)/a(n) = sqrt(2/(e*Pi))/erfc(1/sqrt(2))-1 = A111129.

A173895 E.g.f. satisfies: A'(x) = 1/(1 + x*A(x)) with A(0) = 1.

Original entry on oeis.org

1, 1, -1, 0, 9, -48, 15, 2448, -24927, 23424, 3091311, -47659200, 88056969, 10702667520, -225139993377, 679791291648, 78646340795265, -2128005345251328, 9456106738649631, 1053535684549174272
Offset: 0

Views

Author

Peter Bala, Nov 26 2010

Keywords

Comments

Define a polynomial sequence P_n(x) recursively by
... P_0(x) = 1, and for n >= 1
... P_n(x) = (x-1)*P_(n-1)(x-1)-n*P_(n-1)(x+1).
The first few polynomials are
P_1(x) = x-2
P_2(x) = x^2-6*x+5
P_3(x) = x^3-12*x^2+32*x-12.
It appears that a(n+1) = P_n(1) (checked as far as a(19)).
Compare with A144010.

Examples

			E.g.f.: A(x) = 1 + x - x^2/2! + 9*x^4/4! - 48*x^5/5! + 15*x^6/6! + 2448*x^7/7! +...
where
1/(1 + x*A(x)) = 1 - x + 9*x^3/3! - 48*x^4/4! + 15*x^5/5! + 2448*x^6/6! +...
Also, A(G(x)) = 1 + x where
G(x) = x + x^2/2! + 3*x^3/3! + 6*x^4/4! + 18*x^5/5! + 48*x^6/6! + 156*x^7/7! + 492*x^8/8! +...+ A000932(n-1)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    m = 20; A[_] = 1;
    Do[A[x_] = 1 + Integrate[1/(1+x*A[x])+O[x]^m, x]+O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] * Range[0, m-1]! (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1/(1+x*A+x*O(x^n)) ));n!*polcoeff(A, n)}

Formula

E.g.f. satisfies: A(x) = 1 + Integral 1/(1 + x*A(x)) dx.
E.g.f. satisfies: A(G(x)) = 1 + x where G(x) is the e.g.f. of A000932 (offset 1). [Paul D. Hanna, Aug 23 2011]

A070895 Triangle read by rows where T(n+1,k)=T(n,k)+n*T(n-1,k) starting with T(n,n)=1 and T(n,k)=0 if n

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 6, 4, 1, 1, 26, 18, 8, 5, 1, 1, 76, 48, 28, 10, 6, 1, 1, 232, 156, 76, 40, 12, 7, 1, 1, 764, 492, 272, 110, 54, 14, 8, 1, 1, 2620, 1740, 880, 430, 150, 70, 16, 9, 1, 1, 9496, 6168, 3328, 1420, 636, 196, 88, 18, 10, 1, 1, 35696, 23568
Offset: 0

Views

Author

Henry Bottomley, May 23 2002

Keywords

Comments

For n>k+1, T(n,k) is a multiple of k+2.
Eigentriangle of inverse of (-1)^(n-k)*A094587. Row sums are A187044. - Paul Barry, Mar 02 2011

Examples

			Rows start: 1; 1,1; 2,1,1; 4,3,1,1; 10,6,4,1,1; etc.
Triangle begins
1,
1, 1,
2, 1, 1,
4, 3, 1, 1,
10, 6, 4, 1, 1,
26, 18, 8, 5, 1, 1,
76, 48, 28, 10, 6, 1, 1,
232, 156, 76, 40, 12, 7, 1, 1
Production matrix begins
1, 1,
1, 0, 1,
1, 1, 0, 1,
2, 1, 1, 0, 1,
4, 3, 1, 1, 0, 1,
10, 6, 4, 1, 1, 0, 1,
26, 18, 8, 5, 1, 1, 0, 1,
76, 48, 28, 10, 6, 1, 1, 0, 1,
232, 156, 76, 40, 12, 7, 1, 1, 0, 1
Inverse begins
1,
-1, 1,
-1, -1, 1,
0, -2, -1, 1,
0, 0, -3, -1, 1,
0, 0, 0, -4, -1, 1,
0, 0, 0, 0, -5, -1, 1,
0, 0, 0, 0, 0, -6, -1, 1
- _Paul Barry_, Mar 02 2011
		

Crossrefs

Columns include A000085, A000932, A059480. Right hand columns effectively include A000012 (twice), A000027, A005843, A028552. Cf. A062323 for a triangle with similar formulas.

Formula

T(n, k+1)=(T(n, k-1)-T(n-1, k))/k for 0

A289491 a(n) = denominator of 1/(1 + 1/(1 + 2/(1 + ... (1 + n)))).

Original entry on oeis.org

2, 4, 5, 13, 19, 58, 191, 131, 1187, 2231, 17519, 71063, 29881, 323423, 2887921, 13237457, 2397389, 15030317, 742458253, 3748521653, 9670072483, 25451905333, 10932619111, 78684575461, 4163946939067, 11799518538967, 136025604432743, 159359728522979
Offset: 1

Author

Seiichi Manyama, Sep 02 2017

Keywords

Examples

			1/2, 3/4, 3/5, 9/13, 12/19, 39/58, 123/191, 87/131, 771/1187, 1473/2231, 11427/17519, 46779/71063, 19533/29881, ... = A225436/A289491 -> A108088.
A225436(1)/a(1) = 1/2  = 1/(1 + 1)                         =  1/2,
A225436(2)/a(2) = 3/4  = 1/(1 + 1/(1 + 2))                 =  3/4,
A225436(3)/a(3) = 3/5  = 1/(1 + 1/(1 + 2/(1 + 3)))         =  6/10,
A225436(4)/a(4) = 9/13 = 1/(1 + 1/(1 + 2/(1 + 3/(1 + 4)))) = 18/26.
		

Crossrefs

Cf. A000085, A000932, A108088, A225435, A225436 (numerators).

Programs

  • Maple
    p:= (i, n)-> `if`(i=n, (1+n), 1+i/p(i+1,n)):
    a:= n-> denom(1/p(1,n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 02 2017

Formula

a(n) = A225435(n) + A225436(n).
A225436(n)/a(n) = 1/(1 + 1/(1 + 2/(1 + ... (1 + n)))) = A000932(n)/A000085(n+1).

A291856 a(0) = -1, a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n > 1.

Original entry on oeis.org

-1, 1, 0, 2, 2, 10, 20, 80, 220, 860, 2840, 11440, 42680, 179960, 734800, 3254240, 14276240, 66344080, 309040160, 1503233600, 7374996640, 37439668640, 192314598080, 1015987308160, 5439223064000, 29822918459840, 165803495059840, 941199375015680
Offset: 0

Author

Seiichi Manyama, Sep 04 2017

Keywords

Crossrefs

Programs

  • GAP
    a:=[-1,1];; for n in [3..10^2] do a[n]:=a[n-1]+(n-2)*a[n-2]; od; a;  # Muniru A Asiru, Sep 07 2017
  • Mathematica
    RecurrenceTable[{a[0] == -1, a[1] == 1, a[n] == a[n-1] + (n-1)*a[n-2]}, a[n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 04 2017 *)
    CoefficientList[Series[E^(x*(2 + x)/2) * (E^(1/2)*Sqrt[2*Pi]*(Erf[(1 + x)/Sqrt[2]] - Erf[1/Sqrt[2]]) - 1), {x, 0, 20}], x]*Range[0, 20]! (* Vaclav Kotesovec, Sep 05 2017 *)

Formula

a(n+4) = 2*A249059(n) for n >= 0.
E.g.f.: exp(x*(2+x)/2) * (exp(1/2) * sqrt(2*Pi) * (erf((1+x)/sqrt(2)) - erf(1/sqrt(2))) - 1). - Vaclav Kotesovec, Sep 05 2017
a(n) ~ (sqrt(Pi) * exp(1/2) * (1 - erf(1/sqrt(2))) - sqrt(2)/2) * n^(n/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Sep 05 2017

A346943 a(n) = a(n-1) + n*(n+1)*a(n-2) with a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 7, 19, 159, 729, 7407, 48231, 581535, 4922325, 68891175, 718638075, 11465661375, 142257791025, 2550046679775, 36691916525775, 730304613424575, 11958031070311725, 261722208861516375, 4805774015579971875, 114729101737416849375, 2334996696935363855625
Offset: 0

Author

Vaclav Kotesovec, Aug 08 2021, following a suggestion from John M. Campbell

Keywords

Comments

From Peter Bala, Dec 09 2024: (Start)
b(n) := A000246(n+2) = (n+2)!/2^(n+1) * binomial(n+1, floor((n+1)/2)) satisfies the same second-order recurrence as a(n) with the initial conditions b(0) = 1 and b(1) = 3. This leads to the finite continued fraction a(n)/b(n) = 1/(1 + 2/(1 + 6/(1 + ... + n*(n+1)/1). Letting n tend to infinity gives the continued fraction representation 1/(1 + 2/(1 + 6/(1 + ... + n*(n+1)/(1 + ...) = Pi/2 - 1, due to Euler - see paragraph 31, p. 48. (End)

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n-1] + n*(n+1)*a[n-2], a[0]==1, a[1]==1}, a, {n,0,20}]
    nmax = 20; CoefficientList[Series[(-2 + Pi + 2*Pi*x + 4*Sqrt[1 - x^2] + 2*x*(-2 + Sqrt[1 - x^2]) - 4*(1 + 2*x) * ArcSin[Sqrt[1 - x]/Sqrt[2]]) / (2*(1 - x)^(5/2) * (1 + x)^(3/2)), {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ n! * (Pi - 2) * n^(3/2) / sqrt(2*Pi).
a(n) ~ (Pi - 2) * n^(n+2) / exp(n).
E.g.f. A(x) satisfies the differential equation -6*A(x) - (6*x + 1)*A'(x) + (1 - x^2)*A''(x) = 0, A(0)=1, A'(0)=1.
E.g.f.: (-2 + Pi + 2*Pi*x + 4*sqrt(1-x^2) + 2*x*(-2+sqrt(1-x^2)) - 4*(1+2*x) * arcsin(sqrt(1-x)/sqrt(2))) / (2*(1-x)^(5/2) * (1+x)^(3/2)).
Showing 1-8 of 8 results.