cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000932 a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 6, 18, 48, 156, 492, 1740, 6168, 23568, 91416, 374232, 1562640, 6801888, 30241488, 139071696, 653176992, 3156467520, 15566830368, 78696180768, 405599618496, 2136915595392, 11465706820800, 62751681110208, 349394351630208, 1980938060495616
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Apr 20 2009: (Start)
Uses the same recursive operation as A000085.
Eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) as the main diagonal and (0, 2, 3, 4, 5, ...) as the subdiagonal. To generate A000085, replace the "0" in the subdiagonal with "1". (End)

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 6*x^3/3! + 18*x^4/4! + 48*x^5/5! + 156*x^6/6! + ...
If offset 1, then e.g.f. A(x) = x + x^2/2! + 3*x^3/3! + 6*x^4/4! + 18*x^5/5! + 48*x^6/6! + 156*x^7/7! + ... + a(n-1)*x^n/n! + ...
satisfies F(A(x)) = 1 + x, where F(x) = e.g.f. of A173895:
F(x) = 1 + x - x^2/2! + 9*x^4/4! - 48*x^5/5! + 15*x^6/6! + 2448*x^7/7! + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] + n a[n - 2], a[0] == a[1] == 1}, a, {n, 26}] (* Eric W. Weisstein, May 08 2013 *)
    t = {1, 1}; Do[AppendTo[t, t[[-1]] + n*t[[-2]]], {n, 2, 30}]; t (* T. D. Noe, Jun 21 2012 *)
    f[x_]:=2^(-x/2-2)*Sqrt[Pi*E]*(Erf[1/Sqrt[2]]-1)*(HermiteH[x+1,I/Sqrt[2]]*(Sin[Pi*x/2]+I*Cos[Pi*x/2])+HermiteH[x+1,-I/Sqrt[2]]*(Sin[Pi*x/2]-I*Cos[Pi*x/2]))+2^(x/2+1)*Cos[Pi*x]*Gamma[x+2]*HermiteH[-x-2,1/Sqrt[2]]
    Expand[FunctionExpand[Array[f,20,0]]] (* Velin Yanev, Oct 13 2021 *)

Formula

From Paul D. Hanna, Aug 23 2011: (Start)
E.g.f. satisfies: A(x) = 1 + (1+x)*Integral A(x) dx.
E.g.f. satisfies: A(x) = A'(x)/(1+x) - (A(x)-1)/(1+x)^2.
If offset 1, then e.g.f. A(x) satisfies: F(A(x)) = 1 + x, where F(x) equals the e.g.f. of A173895 and satisfies: F'(x) = 1/(1 + x*F(x)). (End)
a(n)/a(n-1) = sqrt(n)+1/2+o(1) - Benoit Cloitre, Jul 02 2004
a(n) = -sqrt(Pi)/2*Sum[(-1)^k*2^(k/2)*Binomial[n,k]*(HypergeometricPFQRegularized[{1,k-n},{1+(k-n)/2,(1/2)*(1+k-n)},-(1/2)]+(-k+n)*HypergeometricPFQRegularized[{1,1+k-n},{1+(k-n)/2,(1/2)*(3+k-n)},-(1/2)])*HypergeometricU[1-k/2,3/2,1/2],{k,1,n}]. - Eric W. Weisstein, May 08 2013
E.g.f.: (1/2)*(2+e^(1/2*(1+x)^2)*sqrt(2*Pi)*(1+x)*(-erf(1/sqrt(2))+erf((1+x)/sqrt(2)))). - Eric W. Weisstein, May 08 2013
a(n) ~ sqrt(Pi)*(1-erf(1/sqrt(2)))/2 * n^(n/2+1/2)*exp(sqrt(n)-n/2+1/4) * (1+19/(24*sqrt(n))). - Vaclav Kotesovec, Aug 10 2013
a(n) = Sum_{k=0..n} A180048(n,k). - Philippe Deléham, Oct 28 2013

Extensions

More terms from Benoit Cloitre, Jul 02 2004

A144010 E.g.f. satisfies: A'(x) = 1/(1 - x*A(x)) with A(0)=1.

Original entry on oeis.org

1, 1, 1, 4, 21, 160, 1525, 17760, 243145, 3833600, 68373225, 1361264000, 29925477725, 719991897600, 18817847565725, 530921477363200, 16082605690148625, 520603130117939200, 17934634668874889425
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2008

Keywords

Comments

From Peter Bala, Nov 26 2010: (Start)
Define a polynomial sequence P_n(x) recursively by
... P_0(x) = 1,
... P_n(x) = (x-1)*P_(n-1)(x-1) + n*P_(n-1)(x+1) for n >= 1.
The first few polynomials are
P_1(x) = x;
P_2(x) = x^2 + 3;
P_3(x) = x^3 + 12*x + 8.
It appears that a(n+1) = P_n(1) (checked as far as a(19)).
Compare with A173895. (End)

Crossrefs

Programs

  • Mathematica
    FindRoot[Sqrt[Pi/2]*s*E^(-s^2/2)*(Erfi[1/Sqrt[2]]-Erfi[s/Sqrt[2]]) == -1,{s,1},WorkingPrecision->50] (* program for numerical value of the constant s, Vaclav Kotesovec, Feb 23 2014 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = Sum[k Binomial[n-1, k] a[k] a[n-k-1], {k, 1, n-1}]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 17 2016 *)
  • PARI
    {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(1/(1-x*A+x*O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* from Peter Bala's Formula */
    {a(n)=local(P=1);if(n>=0&n<2,1,for(k=1,n-1,P=(x-1)*subst(P,x,x-1) + k*subst(P,x,x+1)));subst(P,x,1)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 15 2013

Formula

E.g.f. satisfies: A(x) = 1 + Integral 1/(1 - x*A(x)) dx.
a(n) ~ n^(n-1) * s^n / exp(n), where s = 2.0832144900084392272885741721727173082215... is the root of the equation sqrt(Pi/2)*s*exp(-s^2/2)*(erfi(1/sqrt(2)) - erfi(s/sqrt(2))) = -1. - Vaclav Kotesovec, Feb 23 2014
a(0) = 1, a(1) = 1, a(n) = Sum_{0 < k < n} k * binomial(n-1, k) * a(k) * a(n-k-1). - Vladimir Reshetnikov, May 17 2016
Showing 1-2 of 2 results.