cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000949 Number of forests with n nodes and height at most 2.

Original entry on oeis.org

1, 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, 121961051, 1782690174, 28055070397, 472594822324, 8479144213191, 161340195463066, 3243707386310033, 68679247688467056, 1526976223741111987, 35557878951515668726, 865217354118762606021
Offset: 0

Views

Author

Keywords

Comments

Equivalently, the number of mappings from a set of n elements into itself where f(f(x)) = f(f(f(x))). - Chad Brewbaker, Mar 26 2014

Examples

			G.f. = 1 + x + 3*x^2 + 16*x^3 + 101*x^4 + 756*x^5 + 6607*x^6 + 65794*x^7 + ... - _Michael Somos_, Jul 03 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)
    a[ n_] := If[ n < 0, 0, 1 + n! Sum[ Sum[ k^(n - m - k) m^k / (k! (n - m - k)!), {k, n - m}] / m!, {m, n - 1}]]; (* Michael Somos, Jul 03 2018 *)
  • Maxima
    a(n):=n!*sum(sum((k^(n-m-k)*m^k)/(k!*(n-m-k)!),k,1,n-m)/m!,m,1,n-1)+1; /* Vladimir Kruchinin, May 28 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x*exp(x*exp(x))))) /* show terms with a(0)=1 */ /* Joerg Arndt, May 28 2011 */

Formula

E.g.f.: exp(x*exp(x*exp(x))).
a(n) = n!*sum(m=1..n-1, sum(k=1..n-m, (k^(n-m-k)*m^k)/(k!*(n-m-k)!))/m!)+1. - Vladimir Kruchinin, May 28 2011

Extensions

More terms from Vladeta Jovovic, Apr 07 2001