cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000969 Expansion of g.f. (1 + x + 2*x^2)/((1 - x)^2*(1 - x^3)).

Original entry on oeis.org

1, 3, 7, 12, 18, 26, 35, 45, 57, 70, 84, 100, 117, 135, 155, 176, 198, 222, 247, 273, 301, 330, 360, 392, 425, 459, 495, 532, 570, 610, 651, 693, 737, 782, 828, 876, 925, 975, 1027, 1080, 1134, 1190, 1247, 1305, 1365, 1426, 1488, 1552, 1617, 1683, 1751, 1820, 1890
Offset: 0

Views

Author

Keywords

Comments

From Paul Curtz, Oct 07 2018: (Start)
Terms that are on the x-axis of the following spiral (without 0):
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20 (End)
Diagonal 1, 4, 8, 13, 20, 28, ... (without 0) is A143978. - Bruno Berselli, Oct 08 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004773 (first differences), A092498 (partial sums).

Programs

  • Haskell
    a000969 = flip div 3 . a014105 . (+ 1)  -- Reinhard Zumkeller, Jun 23 2015
    
  • Magma
    [Floor(Binomial(2*n+3,2)/3): n in [0..60]]; // G. C. Greubel, Apr 18 2023
    
  • Maple
    A000969:=-(1+z+2*z**2)/(z**2+z+1)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[x_, y_]:= Floor[Abs[y/x -x/y]]; Table[f[3, 2n^2+n+2], {n,53}] (* Robert G. Wilson v, Aug 11 2010 *)
    CoefficientList[Series[(1+x+2*x^2)/((1-x)^2*(1-x^3)), {x, 0, 50}], x] (* Stefano Spezia, Oct 08 2018 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,-2,1,-1,2]^n*[1;3;7;12;18])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • SageMath
    [(binomial(2*n+3,2)//3) for n in range(61)] # G. C. Greubel, Apr 18 2023

Formula

a(n) = floor( (2*n+3)*(n+1)/3 ). Or, a(n) = (2*n+3)*(n+1)/3 but subtract 1/3 if n == 1 mod 3. - N. J. A. Sloane, May 05 2010
a(2^k-2) = A139250(2^k-1), k >= 1. - Omar E. Pol, Feb 13 2010
a(n) = Sum_{i=0..n} floor(4*i/3). - Enrique Pérez Herrero, Apr 21 2012
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-3) -2*a(n-4) +1*a(n-5). - Joerg Arndt, Apr 22 2012
a(n) = A014105(n+1) = A258708(n+3,n). - Reinhard Zumkeller, Jun 23 2015
Sum_{n>=0} 1/a(n) = 6 - Pi/sqrt(3) - 10*log(2)/3. - Amiram Eldar, Oct 01 2022
E.g.f.: (exp(x)*(8 + 21*x + 6*x^2) + exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)))/9. - Stefano Spezia, Apr 05 2023