cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000970 Fermat coefficients.

Original entry on oeis.org

1, 7, 25, 66, 143, 273, 476, 775, 1197, 1771, 2530, 3510, 4750, 6293, 8184, 10472, 13209, 16450, 20254, 24682, 29799, 35673, 42375, 49980, 58565, 68211, 79002, 91025, 104371, 119133, 135408, 153296, 172900, 194327, 217686, 243090, 270655
Offset: 5

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A258708.

Programs

  • Haskell
    a000970 n = a258708 n (n - 5)  -- Reinhard Zumkeller, Jun 23 2015
  • Maple
    A000970:=-(2*z**4+3*z**5+3*z**2+4*z**3+3*z+1)/(z**4+z**3+z**2+z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(3x^5+2x^4+4x^3+3x^2+3x+1)/((1-x^5)(1-x)^4),{x,0,50}],x] (* Vincenzo Librandi, Mar 28 2012 *)
    LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1},{1,7,25,66,143,273,476,775,1197},40] (* Harvey P. Dale, Sep 06 2017 *)
  • PARI
    Vec((3*x^5+2*x^4+4*x^3+3*x^2+3*x+1)/(1-x^5)/(1-x)^4+O(x^99)) \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

G.f.: x^5(3x^5 + 2x^4 + 4x^3 + 3x^2 + 3x + 1)/((1-x^5)(1-x)^4).
a(n) = A258708(n,n-5) = A258708(2*n-7,2). - Reinhard Zumkeller, Jun 23 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2011