A000978 Wagstaff numbers: numbers k such that (2^k + 1)/3 is prime.
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399
Offset: 1
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. S. Wagstaff, Jr., personal communication.
Links
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- C. Caldwell's The Top Twenty, Wagstaff.
- C. Caldwell, New Mersenne Conjecture
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
- Editor's Note, Table of Wagstaff primes sent by D. H. Lehmer (annotated and scanned copy)
- J. E. Foster, Problem 174, A solution in primes, Math. Mag., 27 (1954), 156-157.
- R. K. Guy, Letter to N. J. A. Sloane, Aug 1986
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- H. Lifchitz, Mersenne and Fermat primes field
- H. & R. Lifchitz, PRP Top Records.
- Henri & Renaud Lifchitz, PRP Records.
- Gord Palameta, There are no new Wagstaff primes with exponent below 10 million, mersenneforum.org
- Ryan Propper et al., New Wagstaff PRP exponents, mersenneforum.org
- PRP top list: PRP top [From _Tony Reix_, Feb 20 2010]
- Tony Reix, Yahoo Primeform Group Message 10184 dd. Feb 20, 2010, reconstruction in html.
- T. Reix, Some Maths about the Vrba-Reix PRP test [From _Tony Reix_, Feb 20 2010]
- Djurre G. Sikkema, Probable primality testing for Wagstaff prime, Bachelor's project mathematics, Univ. Groningen (Netherlands 2024). See p. 32.
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
- Eric Weisstein's World of Mathematics, Wagstaff Prime
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Wikipedia, Wagstaff prime
- R. G. Wilson, v, Letter to N. J. A. Sloane, circa 1991.
Crossrefs
Programs
-
Haskell
a000978 n = a000978_list !! (n-1) a000978_list = filter ((== 1) . a010051 . a001045) a065091_list -- Reinhard Zumkeller, Mar 24 2013
-
Mathematica
Select[Range[5000], PrimeQ[(2^# + 1)/3] &] (* Michael De Vlieger, Jan 10 2018 *) Select[Prime[Range[2,500]],PrimeQ[(2^#+1)/3]&] (* Harvey P. Dale, Jun 13 2022 *)
-
PARI
forprime(p=2,5000,if(ispseudoprime(2^p\/3),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
Python
from gmpy2 import divexact from sympy import prime, isprime A000978 = [p for p in (prime(n) for n in range(2,10**2)) if isprime(divexact(2**p+1,3))] # Chai Wah Wu, Sep 04 2014
Formula
a(n) = A107036(n) for n>1. - Alexander Adamchuk, Feb 10 2007
Extensions
a(30) from Kamil Duszenko (kdusz(AT)wp.pl), Feb 03 2003; a(30) was proved prime by Francois Morain with FastECPP. - Tony Reix, Sep 03 2007
a(31)-a(39) from Robert G. Wilson v, Apr 11 2005
a(40) from Vincent Diepeveen (diep(AT)xs4all.nl) added by Alexander Adamchuk, Jun 19 2008
a(41) from Tony Reix, Feb 20 2010
Comments