A001017 Ninth powers: a(n) = n^9.
0, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000, 2357947691, 5159780352, 10604499373, 20661046784, 38443359375, 68719476736, 118587876497, 198359290368, 322687697779, 512000000000, 794280046581, 1207269217792
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
- T. Lengyel, On divisibility of some power sums, INTEGERS, 7(2007), A41, 1-6.
- K. MacMillan and J. Sondow, Divisibility of power sums and the generalized Erdős-Moser equation, arXiv:1010.2275 [math.NT], 2010-2011.
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
Crossrefs
Programs
-
Magma
[n^9 : n in [0..40]]; // Wesley Ivan Hurt, Apr 01 2016
-
Maple
A001017:=n->n^9: seq(A001017(n), n=0..30); # Wesley Ivan Hurt, Apr 01 2016
-
Mathematica
Table[n^9, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *) Range[0, 30]^9 (* Wesley Ivan Hurt, Apr 01 2016 *)
-
PARI
vector(100, n, (n-1)^9) \\ Derek Orr, Aug 03 2014
-
PARI
A001017(n)=n^9 \\ M. F. Hasler, Jul 03 2025
-
Python
A001017 = lambda n: n**9 # M. F. Hasler, Jul 03 2025
Formula
Multiplicative with a(p^e) = p^(9e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^9 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(x-1)^10. - R. J. Mathar, Jan 07 2011
a(n) = A000578(n)^3. - Wesley Ivan Hurt, Apr 01 2016
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(9) (A013667).
Sum_{n>=1} (-1)^(n+1)/a(n) = 255*zeta(9)/256. (End)
Extensions
More terms from James Sellers, Sep 19 2000
Comments