cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001017 Ninth powers: a(n) = n^9.

Original entry on oeis.org

0, 1, 512, 19683, 262144, 1953125, 10077696, 40353607, 134217728, 387420489, 1000000000, 2357947691, 5159780352, 10604499373, 20661046784, 38443359375, 68719476736, 118587876497, 198359290368, 322687697779, 512000000000, 794280046581, 1207269217792
Offset: 0

Views

Author

Keywords

Comments

A number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. It could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015
A generalization. Using modified Lengyel's 2007 ideas one can prove that, for every odd r>=3, every number of the form n^r + (n+1)^r + ... + (n+k)^r is nonprime. - Vladimir Shevelev, Apr 04 2015
Composition of the cubes with themselves. - Wesley Ivan Hurt, Apr 01 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000578 (cubes), A013667 (zeta(9)), A256581.
Cf. A003391 - A004801 (sums of 2, ..., 12 positive 9th powers).

Programs

Formula

Multiplicative with a(p^e) = p^(9e). - David W. Wilson, Aug 01 2001
Totally multiplicative sequence with a(p) = p^9 for primes p. - Jaroslav Krizek, Nov 01 2009
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(x-1)^10. - R. J. Mathar, Jan 07 2011
a(n) = A000578(n)^3. - Wesley Ivan Hurt, Apr 01 2016
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(9) (A013667).
Sum_{n>=1} (-1)^(n+1)/a(n) = 255*zeta(9)/256. (End)

Extensions

More terms from James Sellers, Sep 19 2000