A253637 Second partial sums of ninth powers (A001017).
1, 514, 20710, 303050, 2538515, 14851676, 67518444, 254402940, 828707925, 2403012910, 6335265586, 15427298614, 35123831015, 75481410200, 154282348760, 301802764056, 567911055849, 1032378638010, 1819533917950, 3118689197890, 5212124524411, 8512829068724, 13614686274500, 21358351020500, 32916713032125, 49904578722726
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
- Luciano Ancora, Second partial sums of the m-th powers
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Cf. A001017.
Programs
-
GAP
List([1..30], n-> n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3 +5*n^2-38*n+ 25)/660 ); # G. C. Greubel, Aug 28 2019
-
Magma
[n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660: n in [1..30]]; // G. C. Greubel, Aug 28 2019
-
Maple
seq(n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660, n=1..30); # G. C. Greubel, Aug 28 2019
-
Mathematica
CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^12, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 19 2015 *) Nest[Accumulate,Range[30]^9,2] (* Harvey P. Dale, Apr 18 2021 *)
-
PARI
a(n) = (6*n^11 + 66*n^10 + 275*n^9 + 495*n^8 + 198*n^7 - 462*n^6 - 330*n^5 + 330*n^4 + 231*n^3 - 99*n^2 - 50*n)/660; \\ Michel Marcus, Jan 08 2015
-
Sage
[n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660 for n in (1..30)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4 + 24*n^3 + 5*n^2 - 38*n + 25)/660.
a(n) = 2*a(n-1) - a(n-2) + n^9.
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^12. - Vincenzo Librandi, Jan 19 2015
Comments