cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001024 Powers of 15.

Original entry on oeis.org

1, 15, 225, 3375, 50625, 759375, 11390625, 170859375, 2562890625, 38443359375, 576650390625, 8649755859375, 129746337890625, 1946195068359375, 29192926025390625, 437893890380859375, 6568408355712890625, 98526125335693359375, 1477891880035400390625, 22168378200531005859375, 332525673007965087890625
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 15), L(1, 15), P(1, 15), T(1, 15). Essentially same as Pisot sequences E(15, 225), L(15, 225), P(15, 225), T(15, 225). See A008776 for definitions of Pisot sequences.
A000005(a(n)) = A000290(n+1). - Reinhard Zumkeller, Mar 04 2007
If X_1, X_2, ..., X_n is a partition of the set {1,2,...,2*n} into blocks of size 2 then, for n>=1, a(n) is equal to the number of functions f : {1,2,..., 2*n}->{1,2,3,4} such that for fixed y_1,y_2,...,y_n in {1,2,3,4} we have f(X_i)<>{y_i}, (i=1,2,...,n). - Milan Janjic, May 24 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 15-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Number of ways to assign truth values to n quaternary disjunctions connected by conjunctions such that the proposition is true. For example, a(2) = 225, since for the proposition (a v b v c v d) & (e v f v g v h) there are 225 assignments that make the proposition true. - Ori Milstein, Jan 26 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A159991(n)/A000302(n). - Reinhard Zumkeller, May 02 2009
Row 6 of A329332.

Programs

Formula

G.f.: 1/(1-15x), e.g.f.: exp(15x)
a(n) = 15^n; a(n) = 15*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010

Extensions

More terms from James Sellers, Sep 19 2000