cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001028 E.g.f. satisfies A'(x) = 1 + A(A(x)), A(0)=0.

Original entry on oeis.org

1, 1, 2, 7, 37, 269, 2535, 29738, 421790, 7076459, 138061343, 3089950076, 78454715107, 2238947459974, 71253947372202, 2511742808382105, 97495087989736907, 4145502184671892500, 192200099033324115855, 9676409879981926733908, 527029533717566423156698
Offset: 1

Views

Author

Keywords

Comments

The e.g.f. is diverging (see the Math Overflow link). - Pietro Majer, Jan 29 2017

References

  • This functional equation (for f(x)=1+A(x-1)) was the subject of problem B5 of the 2010 Putnam exam.

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; local T; if n=0 then 0 else T:= A(n-1); unapply(convert(series(Int(1+T(T(x)), x), x, n+1), polynom), x) fi end: a:= n-> coeff(A(n)(x), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 23 2008
  • Mathematica
    terms = 21; A[] = 0; Do[A[x] = x + Integrate[A[A[x]], x] + O[x]^(n+1) // Normal, {n, terms}];
    Rest[CoefficientList[A[x], x]]*Range[terms]! (* Jean-François Alcover, Dec 07 2011, updated Jan 10 2018 *)
  • Maxima
    Co(n,k,a):= if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1,a), i,0,n-k); a(n):= if n=1 then 1 else (1/n)*sum(Co(n-1,k,a)*a(k),k,1,n-1); makelist(n!*a(n),n,1,7); /* Vladimir Kruchinin, Jun 30 2011 */
    
  • PARI
    {a(n) = my(A=x); for(i=1,n, A = serreverse(intformal(1/(1+A) +x*O(x^n)))); n!*polcoeff(A,n)}
    for(n=1,25,print1(a(n),", ")) \\ Paul D. Hanna, Jun 27 2015

Formula

E.g.f. satisfies: A(x) = Series_Reversion( Integral 1/(1 + A(x)) dx ). - Paul D. Hanna, Jun 27 2015

Extensions

More terms from Christian G. Bower, Oct 15 1998
Corrected by Alois P. Heinz, Aug 23 2008
Two more terms from Sean A. Irvine, Feb 22 2012