A001028 E.g.f. satisfies A'(x) = 1 + A(A(x)), A(0)=0.
1, 1, 2, 7, 37, 269, 2535, 29738, 421790, 7076459, 138061343, 3089950076, 78454715107, 2238947459974, 71253947372202, 2511742808382105, 97495087989736907, 4145502184671892500, 192200099033324115855, 9676409879981926733908, 527029533717566423156698
Offset: 1
References
- This functional equation (for f(x)=1+A(x-1)) was the subject of problem B5 of the 2010 Putnam exam.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..320 (first 100 terms from Alois P. Heinz)
- P. J. Cameron, Sequence operators from groups, Linear Alg. Applic., 226-228 (1995), 109-113.
- Math Overflow, f' = exp(f^(-1)), again, January 2017.
Programs
-
Maple
A:= proc(n) option remember; local T; if n=0 then 0 else T:= A(n-1); unapply(convert(series(Int(1+T(T(x)), x), x, n+1), polynom), x) fi end: a:= n-> coeff(A(n)(x), x, n)*n!: seq(a(n), n=1..22); # Alois P. Heinz, Aug 23 2008
-
Mathematica
terms = 21; A[] = 0; Do[A[x] = x + Integrate[A[A[x]], x] + O[x]^(n+1) // Normal, {n, terms}]; Rest[CoefficientList[A[x], x]]*Range[terms]! (* Jean-François Alcover, Dec 07 2011, updated Jan 10 2018 *)
-
Maxima
Co(n,k,a):= if k=1 then a(n) else sum(a(i+1)*Co(n-i-1,k-1,a), i,0,n-k); a(n):= if n=1 then 1 else (1/n)*sum(Co(n-1,k,a)*a(k),k,1,n-1); makelist(n!*a(n),n,1,7); /* Vladimir Kruchinin, Jun 30 2011 */
-
PARI
{a(n) = my(A=x); for(i=1,n, A = serreverse(intformal(1/(1+A) +x*O(x^n)))); n!*polcoeff(A,n)} for(n=1,25,print1(a(n),", ")) \\ Paul D. Hanna, Jun 27 2015
Formula
E.g.f. satisfies: A(x) = Series_Reversion( Integral 1/(1 + A(x)) dx ). - Paul D. Hanna, Jun 27 2015
Extensions
More terms from Christian G. Bower, Oct 15 1998
Corrected by Alois P. Heinz, Aug 23 2008
Two more terms from Sean A. Irvine, Feb 22 2012
Comments