A001037 Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0
Examples
Binary strings (Lyndon words, cf. A102659): a(0) = 1 = #{ "" }, a(1) = 2 = #{ "0", "1" }, a(2) = 1 = #{ "01" }, a(3) = 2 = #{ "001", "011" }, a(4) = 3 = #{ "0001", "0011", "0111" }, a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
References
- Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
- P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
- Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
- Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
- M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..3333 (terms 0..200 from T. D. Noe)
- Per Alexandersson and Joakim Uhlin, Cyclic sieving, skew Macdonald polynomials and Schur positivity, arXiv:1908.00083 [math.CO], 2019.
- Nicolas Andrews, Lucas Gagnon, Félix Gélinas, Eric Schlums, and Mike Zabrocki, When are Hopf algebras determined by integer sequences?, arXiv:2505.06941 [math.CO], 2025. See p. 17.
- Joerg Arndt, Matters Computational (The Fxtbook), pp.379-383, pp.843-845.
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 3rd line of Table 1 (p. 6).
- E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie, On a digraph defined by squaring modulo n, Fibonacci Quart. 30 (1992), 322-333.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Émilie Charlier, Manon Philibert, and Manon Stipulanti, Nyldon words, arXiv:1804.09735 [math.CO], 2018. Also J. Comb. Thy. A, 167 (2019), 60-90.
- R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.
- J. Demongeot, M. Noual and S. Sene, On the number of attractors of positive and negative threshold Boolean automata circuits, 2010 IEEE 24th Intl. Conf. Advan. Inf. Network. Appl. Workshops (WAINA), p 782-789.
- Joscha Diehl, Rosa Preiß, and Jeremy Reizenstein, Conjugation, loop and closure invariants of the iterated-integrals signature, arXiv:2412.19670 [math.RA], 2024. See p. 6.
- Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, arXiv:0706.2297 [math.DS], 2007; Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.
- S. V. Duzhin and D. V. Pasechnik, Groups acting on necklaces and sandpile groups, 2014. See page 85. - _N. J. A. Sloane_, Jun 30 2014
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- M. A. Harrison, On the classification of Boolean functions by the general linear and affine groups, J. Soc. Indust. Appl. Math. 12 (1964) 285-299.
- A. Knopfmacher and M. E. Mays, Graph Compositions I: Basic enumeration, Integers 1 (2001), A4, eq. (1).
- T. Laarhoven and B de Weger, The Collatz conjecture and De Bruijn graphs, arXiv preprint arXiv:1209.3495 [math.NT], 2012. - From _N. J. A. Sloane_, Dec 27 2012
- J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arithmetica, LVI (1990), pp. 33-53.
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, sequence gamma_{2,j}^(T), arXiv:0903.2514 [math.NT], 2009-2011.
- Ueli M. Maurer, Asymptotically-tight bounds on the number of cycles in generalized de Bruijn-Good graphs, Discrete applied mathematics 37 (1992): 421-436. See Table 1.
- Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018.
- H. Meyn and W. Götz, Self-reciprocal polynomials over finite fields, Séminaire Lotharingien de Combinatoire, B21d (1989), 8 pp.
- J.-F. Michon and P. Ravache, On different families of invariant irreducible polynomials over F_2, Finite fields & Applications 16 (2010) 163-174.
- Hans Z. Munthe-Kaas and Jonatan Stava, Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces, arXiv:2306.15582 [math.DG], 2023.
- Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, ArXiv 1011.3930 [cs.DM]. - _N. J. A. Sloane_, Jul 07 2012
- Cormac O'Sullivan, Topographs for binary quadratic forms and class numbers, arXiv:2408.14405 [math.NT], 2024. See p. 30.
- George Petrides and Johannes Mykkeltveit, On the Classification of Periodic Binary Sequences into Nonlinear Complexity Classes, in Sequences and Their Applications SETA 2006, Lecture Notes in Computer Science, Volume 4086/2006, pp 209-222. [From _N. J. A. Sloane_, Jul 09 2009]
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Primitive and Irreducible Polynomials
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Troy Vasiga and Jeffrey Shallit, On the iteration of certain quadratic maps over GF(p), Discrete Mathematics, Volume 277, Issues 1-3, 2004, pages 219-240.
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Lyndon Word
- Wikipedia, Lyndon word
- Index entries for sequences related to Lyndon words
- Index entries for "core" sequences
Crossrefs
Column 2 of A074650.
Row sums of A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Euler transform is A000079.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Cf. A000031 (n-bead necklaces but may have period dividing n), A014580, A046211, A046209, A006206-A006208, A038063, A060477, A103314.
See also A102659 for the list of binary Lyndon words themselves.
Programs
-
Haskell
a001037 0 = 1 a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $ a027750_row n) `div` n -- Reinhard Zumkeller, Feb 01 2013
-
Maple
with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
-
PARI
A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
-
PARI
{a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
-
PARI
a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
-
Python
from sympy import divisors, mobius def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017
Formula
For n >= 1:
a(n) = (1/n)*Sum_{d | n} mu(n/d)*2^d.
A000031(n) = Sum_{d | n} a(d).
2^n = Sum_{d | n} d*a(d).
a(n) = A027375(n)/n.
G.f.: 1 - Sum_{n >= 1} moebius(n)*log(1 - 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
From Richard L. Ollerton, May 10 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 11 2021
Extensions
Revised by N. J. A. Sloane, Jun 10 2012
Comments