A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010).
1, 1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000
Offset: 0
Examples
a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
- M. Petkovsek et al., A=B, Peters, 1996, p. 21.
Links
- Antoine Mathys, Table of n, a(n) for n = 0..496 (first 100 terms by T. D. Noe)
- Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
- E. C. Catalan, Théorème de MM. Smith et Mansion, Nouvelle correspondance mathématique, 4 (1878) 103-112. [_Philippe Deléham_, Dec 22 2003]
- Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, 76 (2003), 392-394.
- P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.
- Mathoverflow, Asymptotics of product of Euler's totient function, 2016.
- H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.
- Eric Weisstein's World of Mathematics, Le Paige's Theorem
- Index to divisibility sequences
Programs
-
GAP
List([1..30],n->Product([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
-
Haskell
a001088 n = a001088_list !! (n-1) a001088_list = scanl1 (*) a000010_list -- Reinhard Zumkeller, Mar 04 2012
-
Maple
with(numtheory,phi); A001088 := proc(n) local i; mul(phi(i),i=1..n); end; seq(A001088(n), n=0..30);
-
Mathematica
A001088[n_]:=Times@@EulerPhi/@Range[n]; Table[A001088[n], {n, 30}] (* Enrique Pérez Herrero, Sep 19 2010 *) Rest[FoldList[Times,1,EulerPhi[Range[30]]]] (* Harvey P. Dale, Dec 09 2011 *)
-
PARI
a(n)=prod(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Mar 04 2012
Formula
a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 19 2023
Comments