A001146 a(n) = 2^(2^n).
2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 0
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..11
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Jan Brandts and Apo Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, Special Matrices, Vol. 5, No. 1 (2017), pp. 158-201, arXiv preprint, arXiv:1512.03044 [math.CO], 2015.
- John H. Conway, Sphere packings, lattices, codes and greed, pp. 45-55 of Proc. Intern. Congr. Math., Vol. 2, 1994, alternative link.
- Jose María Grau and A. M. Oller-Marcén On the last digit and the last non-zero digit of n^n in base b, arXiv:1203.4066 [math.NT], 2012.
- Richard K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
- Rudolf Ondrejka, Exact values of 2^n, n=1(1)4000, Math. Comp., 23 (1969), 456.
- Rudolf Ondrejka, Letter to N. J. A. Sloane, May 15 1976
- Eric Weisstein's World of Mathematics, Irrationality Sequence, Quadratic Recurrence Equation, Coin Tossing.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
Crossrefs
Programs
-
Haskell
a001146 = (2 ^) . (2 ^) a001146_list = iterate (^ 2) 2 -- Reinhard Zumkeller, Jun 04 2012
-
Magma
[2^(2^n): n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Maple
A001146:=n->2^(2^n): seq(A001146(n), n=0..9); # Wesley Ivan Hurt, Sep 19 2014
-
Mathematica
2^2^Range[0,10] (* Harvey P. Dale, Jul 20 2011 *)
-
PARI
a(n)=1<<2^n \\ Charles R Greathouse IV, Jul 25 2011
-
PARI
a(n)=2^2^n \\ Charles R Greathouse IV, Oct 03 2012
-
Python
def A001146(n): return 1<<(1<
Chai Wah Wu, Mar 14 2023
Formula
a(n+1) = (a(n))^2.
1 = Sum_{n>=0} a(n)/A051179(n+1) = 2/3 + 4/15 + 16/255 + 256/65535, ..., with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
Sum_{n>=0} 1/a(n) = A007404. - Amiram Eldar, Oct 14 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2.
Product_{n>=0} (1 - 1/a(n)) = A215016. (End)
Comments