A001224 If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 1
Examples
From _Petros Hadjicostas_, Jan 08 2018: (Start) We give some examples to explain _Christian G. Bower's theory of transforms given in the weblink above. We have boxes of two sizes here: boxes that can hold one ball and boxes that can hold two balls. (This is because we want the BIK transform of x + x^2. See the comments above.) Two boxes of the same size are considered identical (indistinct and unlabeled). We place the boxes in a line that can be read in either direction. Here, a(n) = total number of ways of placing such boxes in such a line so that the total number of balls in the boxes is n. When we have 4 balls in total inside the boxes, we have the following configurations of boxes in a line that can be read in either direction: 1111, 121, 211, and 22. (Note that 211 = 112.) Hence, a(4) = 4. When n = 5, we have the following configurations of boxes: 11111, 2111, 1211, 221, and 212. Hence, a(5) = 5. When n = 6, we have: 111111, 21111, 12111, 11211, 2211, 2121, 2112, 1221, and 222. Hence, a(6) = 9. (End)
References
- S. Golomb, Polyominoes, Princeton Univ. Press 1994.
- S. Jablan S. and R. Sazdanovic, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- Ali Reza Ashrafi, Jernej Azarija, Khadijeh Fathalikhani, Sandi Klavžar, and Marko Petkovšek, Vertex and edge orbits of Fibonacci and Lucas cubes, arXiv:1407.4962 [math.CO], 2014.
- M. Assis, J. L. Jacobsen, I. Jensen, J.-M. Maillard, and B. M. McCoy, Integrability vs non-integrability: Hard hexagons and hard squares compared, arXiv preprint 1406.5566 [math-ph], 2014.
- Christian G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- S. V. Jablan, Geometry of Links, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29(3) (1999), 121-139. [Broken link]
- S. V. Jablan, Geometry of Links, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29(3) (1999), 121-139.
- Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), 4790-4799. (Table I)
- W. E. Patten (proposer) and S. W. Golomb (solver), Problem E1470, "Covering a 2Xn rectangle with dominoes", Amer. Math. Monthly, 69 (1962), 61-62.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- J. Riordan, Letter, Jul 13 1970.
- N. J. A. Sloane, Annotated scan of Monthly problem E1470 with illustration of a(4)=4 (Page 1).
- N. J. A. Sloane, Annotated scan of Monthly problem E1470 with illustration of a(4)=4 (Page 2).
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,0,-1,-1).
Programs
-
Magma
[(1/2)*((Fibonacci(n+1))+Fibonacci(((n+3+(-1)^n) div 2))): n in [1..40]]; // Vincenzo Librandi, Nov 23 2014
-
Maple
# Maple code for A060312 and A001224 from N. J. A. Sloane, Mar 30 2015 with(combinat); F:=fibonacci; f:=proc(n) option remember; if n=2 then 1 # change this to 2 to get A001224 elif (n mod 2) = 0 then (F(n+1)+F(n/2+2))/2; else (F(n+1)+F((n+1)/2))/2; fi; end; [seq(f(n),n=1..50)]; A001224:=-(-1-z+2*z**2+z**3+z**4+z**5)/(z**4+z**2-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation a:= n-> (Matrix([[5,4,2,2,1,1]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,0,-1,-1][i] else 0 fi)^n)[1,6]: seq(a(n), n=1..38); # Alois P. Heinz, Aug 26 2008
-
Mathematica
a[n_?EvenQ] := (Fibonacci[n + 1] + Fibonacci[n/2 + 2])/2; a[n_?OddQ] := (Fibonacci[n + 1] + Fibonacci[(n + 1)/2])/2; Table[a[n], {n, 38}] (* Jean-François Alcover, Oct 06 2011, after formula *) LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 2, 2, 4, 5, 9}, 38] (* Jean-François Alcover, Sep 21 2017 *)
Formula
From Christian G. Bower, May 09 2000: (Start)
G.f.: (2-(x+x^2)^2)/(2*(1-x-x^2)) + (1+x+x^2)*(x^2+x^4)/(2*(1-x^2-x^4)).
"BIK" transform of x+x^2. (End)
If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
G.f.: (1+x)*(1-x-x^3)/((1-x-x^2)*(1-x^2-x^4)). (See the Comments section above.) - Petros Hadjicostas, Jan 08 2018
From Manfred Boergens, Aug 25 2025: (Start)
a(n) = (Fibonacci(n+1) + Fibonacci(floor((n+3+(-1)^n)/2)))/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). (End)
Extensions
More terms from Christian G. Bower, May 09 2000
Typo in references corrected by Jernej Azarija, Oct 23 2013
Edited by N. J. A. Sloane, Mar 30 2015
Comments