cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001303 Stirling numbers of first kind, s(n+3, n), negated.

Original entry on oeis.org

6, 50, 225, 735, 1960, 4536, 9450, 18150, 32670, 55770, 91091, 143325, 218400, 323680, 468180, 662796, 920550, 1256850, 1689765, 2240315, 2932776, 3795000, 4858750, 6160050, 7739550, 9642906, 11921175, 14631225, 17836160, 21605760, 26016936, 31154200
Offset: 1

Views

Author

Keywords

Comments

a(n) is equal to the sum of the products of each distinct grouping of 3 members of the set {1, 2, 3, ..., n + 2} (a(1) = 1*2*3, a(2) = 1*2*3 + 1*2*4 + 1*3*4 + 2*3*4, a(3) = 1*2*3 + 1*2*4 + 1*2*5 + 1*3*4 + 1*3*5 + 1*4*5 + 2*3*4 + 2*3*5 + 2*4*5 + 3*4*5). - Jeffreylee R. Snow, Sep 23 2013

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(numbperm (n,2)*numbperm (n,4)/48, n=4..33); # Zerinvary Lajos, Apr 26 2007
    seq(15*binomial(n+2,6)-10*binomial(n+1,5)+binomial(n,4),n=4..30); # Miklos Kristof, Nov 04 2007
    A001303 := proc(n)
        -combinat[stirling1](n+3,n) ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    Table[-StirlingS1[n + 3, n], {n, 100}] (* T. D. Noe, Jun 27 2012 *)
    a[ n_] := n (n + 1) (n + 2)^2 (n + 3)^2 / 48; (* Michael Somos, Sep 04 2017 *)
  • PARI
    a(n) = n*(n+1)*(n+2)^2*(n+3)^2/48; \\ Altug Alkan, Aug 29 2017
  • Sage
    [stirling_number1(n,n-3) for n in range(4, 34)] # Zerinvary Lajos, May 16 2009
    

Formula

a(n) = binomial(n+3, 4)*binomial(n+3, 2).
G.f.: x*(6 + 8*x + x^2)/(1 - x)^7. - Simon Plouffe in his 1992 dissertation
E.g.f. with offset 3: exp(x)*(6*(x^3)/3! + 26*(x^4)/4! + 35*(x^5)/5! + 15*(x^6)/6!). See row k=3 of A112486 for the coefficients [6, 26, 35, 15].
a(n) = (f(n+2, 3)/6!)*Sum_{m=0..min(3, n)} A112486(3,m)*f(6, 3-m)*f(n-1, m), with the falling factorials notation f(n, m):=n*(n-1)*...*(n-(m-1)).
From Jason Lang, Oct 03 2006: (Start)
a(n) = A000217(n) * n! / ( 4! * (n-4)! ) [for n > 4 and A000217 = the triangular numbers];
a(n) = ((n+4)! / n! ) ^2 / ( (n+2) * (n+1) * 2*4!);
a(n) = (n-0)^2 * (n-1)^2 * (n-2) * (n-3) / (2*4!). (End)
From Miklos Kristof, Nov 04 2007: (Start)
a(n) = 15*binomial(n+5,6) - 10*binomial(n+4,5) + binomial(n+3,4).
E.g.f. with offset 4: exp(x)*((1/4)*x^4 + (1/6)*x^5 + (1/48)*x^6). (End)
a(n) = n*(n+1)(n+2)^2*(n+3)^2/48. - Jeremy Galvagni, Mar 03 2009
From Gary Detlefs, Jun 06 2010: (Start)
a(n) = (n+3)^2/(n^2-1)*a(n-1), n > 1;
a(n) = 6*Product_{k=2..n} (k+3)^2/(k^2 - 1). (End)
a(n) = A001297(-3-n) for all n in Z. - Michael Somos, Sep 04 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 16*Pi^2/3 - 472/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*Pi^2/3 + 16/9 - 64*log(2)/3. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Notation of the polynomial formula edited by R. J. Mathar, Sep 15 2009