cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001304 Expansion of 1/((1-x)^2*(1-x^2)*(1-x^5)).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 49, 60, 73, 87, 103, 121, 141, 163, 187, 213, 242, 273, 307, 343, 382, 424, 469, 517, 568, 622, 680, 741, 806, 874, 946, 1022, 1102, 1186, 1274, 1366, 1463, 1564, 1670, 1780, 1895, 2015, 2140, 2270, 2405, 2545, 2691, 2842
Offset: 0

Views

Author

Keywords

Comments

Ways of making change for n cents using coins of 1, 2 and 5 cents, if two different kinds of 1-cent coin are counted as different. - Matthew Vandermast, Feb 27 2003

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 113, Example (2), D(n; 1,2,4,10).

Crossrefs

First differences are in A000115.

Programs

  • Maple
    a:= proc(n) local m, r; m:= iquo(n, 10, 'r'); r:= r+1; (53+ (135+ 100*m) *m) *m/6+ [1, 2, 4, 6, 9, 13, 18, 24, 31, 39][r]+ [0, 5, 11, 18, 26, 35, 45, 56, 68, 81][r]*m+ (r-1)*5 *m^2 end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^5)),{x,0,50}],x] (* Vincenzo Librandi, Feb 24 2012 *)
    LinearRecurrence[{2,0,-2,1,1,-2,0,2,-1},{1,2,4,6,9,13,18,24,31},60] (* Harvey P. Dale, Oct 03 2018 *)
  • PARI
    a(n)=floor((n+8)*(2*n^2+11*n+18)/120) \\ Tani Akinari, May 14 2014

Formula

G.f.: 1/((1-x)^2*(1-x^2)*(1-x^5)) = 1 / ((1+x)*(x^4+x^3+x^2+x+1)*(x-1)^4).
a(n) = floor((n+8)*(2*n^2+11*n+18)/120). - Tani Akinari, May 14 2014