cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A244431 Indices of repeated terms in A001379, the list of degrees of irreducible representations of Monster group M.

Original entry on oeis.org

16, 17, 26, 27, 39, 40, 41, 42, 44, 45, 47, 48, 53, 54, 55, 56, 59, 60, 71, 72, 74, 75, 81, 82, 83, 84, 85, 86, 89, 90, 99, 100, 102, 103, 105, 106, 107, 108, 123, 124, 125, 128, 129, 135, 136, 179, 180
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2014

Keywords

Comments

A001379 has 194 terms, but the number of distinct terms is 194 - 23 - 1 = 194 - 24 = 170.

Examples

			The only triple in A001379 is A001379(123) = A001379(124) = A001379(125) = 5514132424881463208443904. The rest of the repeated terms are pairs, for example; the first of them is A001379(16) = A001379(17) = 8980616927734375, so a(1) = 16 and a(2) = 17.
		

Crossrefs

A247156 Numbers that are repeated in A001379.

Original entry on oeis.org

8980616927734375, 3503434660075044981, 172399434201593354756, 286243267692724486144, 640558364167263622626, 691170144025469730622, 1480279477146615234375, 1768130802583126953125, 4567199176912486400000, 42940402913709544921875, 70660346341309333984375, 149614794149226010902528, 161649111002260792968750, 191259085113459945312500, 260799524107083767968750, 597787522207315571077947, 626877403613887304040448, 689763222744895005949242, 689766726179555080994223, 5514132424881463208443904, 7567151576542452425781250, 9592298143650890255171584, 136574874874360806036041889
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2014

Keywords

Comments

Apart of the single numbers, A001379 contains two copies of every term of this sequence, except of a(20) = 5514132424881463208443904 which A001379 contains three copies.

Crossrefs

A278566 Irregular triangle read by rows: row n gives coefficients when the n-th coefficient of the modular function j (A000521(n)) is written as a linear combination of irreducible characters of the Monster simple group (A001379).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 1, 4, 5, 3, 2, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 26 2016

Keywords

Comments

The coefficients are given as in Thompson's paper. The choice of coefficients is actually ambiguous because of a linear relation with small coefficients between the terms of A001379 (see Wikipedia). - Andrey Zabolotskiy, Feb 12 2019

Examples

			Triangle begins:
  1,1,
  1,1,1,
  2,2,1,1,
  3,3,1,2,1,
  4,5,3,2,1,1,1,
  ...
		

Crossrefs

A002267 The 15 supersingular primes: primes dividing order of Monster simple group.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
Offset: 1

Views

Author

Keywords

Comments

The supersingular primes are a subset of the Chen primes (A109611). - Paul Muljadi, Oct 12 2005
PROD(a(k): 1<=k<=15) = 1618964990108856390 = A174848(26). - Reinhard Zumkeller, Apr 02 2010

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.

Crossrefs

Programs

  • Mathematica
    FactorInteger[GroupOrder[MonsterGroupM[]]][[All, 1]] (* Jean-François Alcover, Oct 03 2016 *)
  • PARI
    A002267=vecextract(primes(20),612351) \\ bitmask 2^20-1-213<<11: remove primes # 12, 14, 16, 18 and 19. - M. F. Hasler, Nov 10 2017

A003131 Order of Monster simple group.

Original entry on oeis.org

8, 0, 8, 0, 1, 7, 4, 2, 4, 7, 9, 4, 5, 1, 2, 8, 7, 5, 8, 8, 6, 4, 5, 9, 9, 0, 4, 9, 6, 1, 7, 1, 0, 7, 5, 7, 0, 0, 5, 7, 5, 4, 3, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 54

Views

Author

Keywords

Examples

			808017424794512875886459904961710757005754368000000000.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. 228.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996, p. 62.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 474.

Crossrefs

Programs

  • PARI
    2^46 * 3^20 * 5^9 * 7^6 * 11^2 * 13^3 * 17 * 19 * 23 * 29 * 31 * 41 * 47 * 59 * 71 \\ Charles R Greathouse IV, Oct 31 2014

Formula

Equals A001228(26) = Product_{n=1..15} A002267(n)^A051161(A049084(A002267(n))) = Sum_{n=0..53} a(53-n)*10^n = h(53) with h(n) = 10*h(n-1) + a(n) for n > 0, h(0) = a(0). - Reinhard Zumkeller, Apr 02 2010

A051161 a(n) is the exponent of n-th prime in the order (A003131) of the Monster simple group.

Original entry on oeis.org

46, 20, 9, 6, 2, 3, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

a(n)=0 for n > 20.
Product_{k>0} (a(k) + 1) = A174601(26). - Reinhard Zumkeller, Apr 02 2010

Crossrefs

A199014 Divisors of 196884.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108, 1823, 3646, 5469, 7292, 10938, 16407, 21876, 32814, 49221, 65628, 98442, 196884
Offset: 1

Views

Author

Omar E. Pol, Nov 03 2011

Keywords

Comments

196884 =2^2*3^3*1823 is the third coefficient of modular function j (see A000521). 196884 has 24 divisors. Its first 12 divisors are the divisors of 108 =2^2*3^3 (see A018287).

Crossrefs

Programs

A247235 Divisors of 5844076785304502808013602136.

Original entry on oeis.org

1, 2, 4, 8, 19, 38, 76, 152, 1800829, 3601658, 7203316, 14406632, 34215751, 68431502, 136863004, 273726008, 21350096865126907517, 42700193730253815034, 85400387460507630068, 170800774921015260136, 405651840437411242823, 811303680874822485646, 1622607361749644971292, 3245214723499289942584, 38447873587529623736931593, 76895747175059247473863186, 153791494350118494947726372, 307582988700236989895452744, 730509598163062851001700267, 1461019196326125702003400534, 2922038392652251404006801068, 5844076785304502808013602136
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2014

Keywords

Comments

The integer 5844076785304502808013602136 is the denominator mentioned in the abstract of the Duncan-Griffin-Ono paper. The proportion of 1's in: 1 = 1, 196884 = 1 + 196883, 21493760 = 1 + 196883 + 21296876... tends to 1/5844076785304502808013602136 = 1.7111... * 10^-28.
..
Apparently 5844076785304502808013602136 is the last term of A247242.

Crossrefs

Programs

A247242 Partial sums of dimensions of irreducible representations of Monster group M.

Original entry on oeis.org

1, 196884, 21493760, 864103086, 19402853162, 38762915689, 332316649987, 4211531587585, 40384724915584, 165895451930859, 356187797640402, 579067654374651, 1623936121149784, 2733880581665934, 5108005421728910
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2014

Keywords

Comments

Partial sums of A001379.
By definition the sequence contains 194 terms.

Crossrefs

Showing 1-9 of 9 results.