cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001379 Degrees of irreducible representations of Monster group M.

Original entry on oeis.org

1, 196883, 21296876, 842609326, 18538750076, 19360062527, 293553734298, 3879214937598, 36173193327999, 125510727015275, 190292345709543, 222879856734249, 1044868466775133, 1109944460516150, 2374124840062976, 8980616927734375, 8980616927734375, 15178147608537368
Offset: 1

Views

Author

Keywords

Comments

The sequence contains 194 terms, of which 170 are distinct. The only triple of repeated terms is a(123) = a(124) = a(125) = 5514132424881463208443904. The rest of the repeated terms are pairs, for example a(16) = a(17) = 8980616927734375. - Omar E. Pol, Nov 28 2014

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Programs

  • GAP
    List(Irr(CharacterTable("M")), chi->chi[1]); # Eric M. Schmidt, Jul 15 2012

A002267 The 15 supersingular primes: primes dividing order of Monster simple group.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
Offset: 1

Views

Author

Keywords

Comments

The supersingular primes are a subset of the Chen primes (A109611). - Paul Muljadi, Oct 12 2005
PROD(a(k): 1<=k<=15) = 1618964990108856390 = A174848(26). - Reinhard Zumkeller, Apr 02 2010

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • A. P. Ogg, Modular functions, in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), pp. 521-532, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980.

Crossrefs

Programs

  • Mathematica
    FactorInteger[GroupOrder[MonsterGroupM[]]][[All, 1]] (* Jean-François Alcover, Oct 03 2016 *)
  • PARI
    A002267=vecextract(primes(20),612351) \\ bitmask 2^20-1-213<<11: remove primes # 12, 14, 16, 18 and 19. - M. F. Hasler, Nov 10 2017

A003131 Order of Monster simple group.

Original entry on oeis.org

8, 0, 8, 0, 1, 7, 4, 2, 4, 7, 9, 4, 5, 1, 2, 8, 7, 5, 8, 8, 6, 4, 5, 9, 9, 0, 4, 9, 6, 1, 7, 1, 0, 7, 5, 7, 0, 0, 5, 7, 5, 4, 3, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 54

Views

Author

Keywords

Examples

			808017424794512875886459904961710757005754368000000000.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. 228.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 296.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996, p. 62.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 474.

Crossrefs

Programs

  • PARI
    2^46 * 3^20 * 5^9 * 7^6 * 11^2 * 13^3 * 17 * 19 * 23 * 29 * 31 * 41 * 47 * 59 * 71 \\ Charles R Greathouse IV, Oct 31 2014

Formula

Equals A001228(26) = Product_{n=1..15} A002267(n)^A051161(A049084(A002267(n))) = Sum_{n=0..53} a(53-n)*10^n = h(53) with h(n) = 10*h(n-1) + a(n) for n > 0, h(0) = a(0). - Reinhard Zumkeller, Apr 02 2010

A174601 Numbers of divisors of orders of sporadic simple groups.

Original entry on oeis.org

60, 112, 128, 192, 192, 384, 480, 384, 704, 896, 1056, 1920, 2688, 3200, 2816, 4256, 4320, 5880, 16128, 16896, 25536, 26400, 45056, 143616, 1580544, 424488960
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2010

Keywords

Comments

a(n) = A000005(A001228(n)).

Examples

			a(1) = A000005(7920) = A000005(2^4 * 3^2 * 5^1 * 11^1) = (4+1)*(2+1)*(1+1)*(1+1) = 60;
a(26) = PROD((A051161(k)+1): k>0) = (46+1)*(20+1)*(9+1)*(6+1)*(2+1)*(3+1)*(1+1)*(1+1)*(1+1)*(1+1)*(1+1)*(0+1)*(1+1)*(0+1)*(1+1)*(0+1)*(1+1)*(0+1)*(0+1)*(1+1)*(0+1)*(0+1)*... = 47*21*10*7*3*4*2*2*2*2*2*1*2*1*2*1*2*1*1*2*1*1*... = 424488960.
		

Crossrefs

Cf. A174670.

A059864 a(n) = Product_{i=4..n} (prime(i)-5), where prime(i) is i-th prime.

Original entry on oeis.org

1, 1, 1, 2, 12, 96, 1152, 16128, 290304, 6967296, 181149696, 5796790272, 208684449792, 7930009092096, 333060381868032, 15986898329665536, 863292509801938944, 48344380548908580864, 2997351594032332013568
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Such products arise in Hardy-Littlewood prime k-tuplet conjectural formulas.

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (&*[NthPrime(j) -5: j in [4..n]]): n in [1..30]]; // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    Join[{1,1,1},FoldList[Times,Prime[Range[4,20]]-5]] (* Harvey P. Dale, Dec 29 2018 *)
  • PARI
    a(n) = prod(k=4, n, prime(k)-5); \\ Michel Marcus, Dec 12 2017
    
  • SageMath
    def A059864(n): return product(nth_prime(j) -5 for j in range(4,n+1))
    [A059864(n) for n in range(1,31)] # G. C. Greubel, Feb 02 2023

A343743 a(n) is the largest base in which the order of the Monster group has (47 - n) zeros; alternatively, radicals of maximal powers dividing the order of the Monster group.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 12, 12, 12, 12, 12, 24, 24, 24, 24, 48, 144, 1440, 1440, 2880, 120960, 1451520, 87091200, 1902071808000, 15184923989114880000, 808017424794512875886459904961710757005754368000000000
Offset: 1

Views

Author

Hal M. Switkay, Jun 27 2021

Keywords

Comments

Let z be a specified minimum number of zeros in the order of the Monster group; here z is a natural number, 1 <= z <= 46, with z = (47 - n). Then the largest base in which the order of the Monster group has at least z zeros is:
Product_{k=1..20} prime(k)^floor(A051161(k)/z).
When z = 1 this is the order of the Monster group.
Every term in this sequence except the last is a number of least prime signature (A025487).
In the following table, when the order of the Monster group has exactly z zeros, it also has s significant digits, and d = s + z total digits.
z s d
-- --- ---
46 134 180
23 67 90
20 30 50
15 25 40
11 22 33
10 15 25
9 9 18
7 9 16
6 5 11
5 4 9
4 3 7
3 2 5
2 1 3
1 1 2

Examples

			a(27) = the largest base in which the order of the Monster group has at least (47 - 27) = 20 zeros. This is 2^(floor(46/20)) * 3^(floor(20/20)) = 2^2 * 3 = 12; the remaining terms in the product have exponent 0.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.

Crossrefs

Cf. A051161.

Programs

  • Mathematica
    f = FactorInteger[MonsterGroupM[] // GroupOrder]; Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* Amiram Eldar, Jul 19 2021 *)

A348092 Unique values, or record values, of A343743.

Original entry on oeis.org

2, 4, 12, 24, 48, 144, 1440, 2880, 120960, 1451520, 87091200, 1902071808000, 15184923989114880000, 808017424794512875886459904961710757005754368000000000
Offset: 1

Views

Author

Hal M. Switkay, Sep 29 2021

Keywords

Comments

Every term in this sequence except the last is a number of least prime signature (A025487).
In the following table, when the order of the Monster group is written in base a(n), it has exactly z zeros, s significant digits, and d = s + z total digits.
n z s d
-- -- --- ---
1 46 134 180
2 23 67 90
3 20 30 50
4 15 25 40
5 11 22 33
6 10 15 25
7 9 9 18
8 7 9 16
9 6 5 11
10 5 4 9
11 4 3 7
12 3 2 5
13 2 1 3
14 1 1 2
a(n) is the largest natural number b such that the order of the Monster group is divisible by b^z.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices, and Groups. Springer, 3rd ed., 1999.

Crossrefs

Programs

  • Mathematica
    f = FactorInteger[MonsterGroupM[] // GroupOrder]; DeleteDuplicates@ Table[Times @@ ((First[#]^Floor[Last[#]/z]) & /@ f), {z, Max[f[[;; , 2]]], 1, -1}] (* Amiram Eldar, Sep 30 2021 *)

Formula

a(n) = Product_{k=1..20} prime(k)^floor(A051161(k)/z(n)).
Showing 1-7 of 7 results.