A108764 Products of exactly two supersingular primes (A002267).
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 77, 82, 85, 87, 91, 93, 94, 95, 115, 118, 119, 121, 123, 133, 141, 142, 143, 145, 155, 161, 169, 177, 187, 203, 205, 209, 213, 217, 221, 235, 247, 253, 287, 289, 295, 299
Offset: 1
Examples
1207 = 17 * 71, 3337 = 47 * 71.
References
- E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232.
- Ogg, A. P. "Modular Functions." In The Santa Cruz Conference on Finite Groups. Held at the University of California, Santa Cruz, Calif., 1979 (Ed. B. Cooperstein and G. Mason). Providence, RI: Amer. Math. Soc., pp. 521-532, 1980.
- Silverman, J. H. The Arithmetic of Elliptic Curves II. New York: Springer-Verlag, 1994.
Links
- T. D. Noe, Table of n, a(n) for n = 1..120
- N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
- Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
- J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
- J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The Primary Pretenders, Acta Arith. 78 (1997), 307-313.
- P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216.
- P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71.
- Peter Luschny, The Schinzel-Sierpinski conjecture and the Calkin-Wilf tree.
- A. Schinzel and W. Sierpinski, Sur certaines hypotheses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
- Eric Weisstein et al., Supersingular Prime.
Programs
-
Mathematica
Union[ Times @@@ Tuples[{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, 2]] (*Robert G. Wilson v, Feb 11 2011 *)
Comments