cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001445 a(n) = (2^n + 2^[ n/2 ] )/2.

Original entry on oeis.org

3, 5, 10, 18, 36, 68, 136, 264, 528, 1040, 2080, 4128, 8256, 16448, 32896, 65664, 131328, 262400, 524800, 1049088, 2098176, 4195328, 8390656, 16779264, 33558528, 67112960, 134225920, 268443648
Offset: 2

Views

Author

Keywords

Comments

a(n) is union of A007582(n-1) and A164051(n). - Jaroslav Krizek, Aug 14 2009
Number of binary strings of length n+1, not counting strings which are the reversal, the complement, or the reversal of the complement of each other as different. - Christian Barrientos, Jun 06 2025

Examples

			G.f. = 3*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 36*x^6 + 68*x^7 + 136*x^8 + ...
		

Crossrefs

Programs

  • Maple
    f := n->(2^n+2^floor(n/2))/2;
  • Mathematica
    Table[(2^n + 2^(Floor[n/2]))/2, {n, 2, 50}] (* G. C. Greubel, Sep 08 2017 *)
    LinearRecurrence[{2,2,-4},{3,5,10},30] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    for(n=2,50, print1((2^n + 2^(n\2))/2, ", ")) \\ G. C. Greubel, Sep 08 2017

Formula

a(n) = (1/2)*A005418(n+2).
G.f.: x^2*(3-x-6*x^2)/((1-2*x)*(1-2*x^2)).
G.f.: 3*G(0) where G(k) = 1 + x*(4*2^k + 1)*(1 + 2*x*G(k+1))/(1 + 2*2^k). - Sergei N. Gladkovskii, Dec 12 2011 [Edited by Michael Somos, Sep 09 2013]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) for n > 4. - Chai Wah Wu, Sep 10 2020
E.g.f.: (2*cosh(2*x) + 2*cosh(sqrt(2)*x) + 2*sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 4 - 6*x)/4. - Stefano Spezia, Jun 14 2025